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Gabriel T Landi, Tânia Tomé and Mário J de Oliveira

Instituto de Fı́sica da Universidade de São Paulo, 05314-970 São Paulo, Brazil

E-mail: gtlandi@gmail.com

Received 26 April 2013, in final form 13 August 2013
Published 9 September 2013
Online at stacks.iop.org/JPhysA/46/395001

Abstract
We study the entropy production rate in systems described by linear Langevin
equations, containing mixed even and odd variables under time reversal. Exact
formulas are derived for several important quantities in terms only of the means
and covariances of the random variables in question. These include the total
rate of change of the entropy, the entropy production rate, the entropy flux rate
and the three components of the entropy production. All equations are cast in
a way suitable for large-scale analysis of linear Langevin systems. Our results
are also applied to different types of electrical circuits, which suitably illustrate
the most relevant aspects of the problem.

PACS numbers: 68.43.De, 05.10.−a, 05.70.−a

(Some figures may appear in colour only in the online journal)

1. Introduction

Non-equilibrium systems have been the subject of intensive research for several decades.
This is partly motivated by their broad range of applications in, e.g., physics, chemistry and
biology. However, and most importantly, further progress in these areas is still hampered
by more fundamental questions. Unlike equilibrium statistical mechanics, which is by now
a well-established theoretical framework, in non-equilibrium statistical mechanics, several
questions remain unanswered. Particularly challenging is the microscopic definition of entropy
production. For, in the context of non-equilibrium thermodynamics [1], it provides the pathway
through which irreversibility is described.

Suppose a certain system undergoes a change of state from state A to state B. If done
reversibly, the total change in the entropy S of the system is !S =

∫
dQ/T , where T is the

temperature and Q is the heat poured into the system. Hence
∫

dQ/T is defined as minus the
entropy flux from the system to the environment. If the process is irreversible, we have instead
!S !

∫
dQ/T . The difference, being a positive quantity, is called the entropy production P:

!S −
∫

dQ
T

= P ! 0.
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It is customary to divide by !t and write, instead

dS
dt

= "(t) − #(t). (1)

In this equation, "(t) is the entropy production rate of the system, which is always non-
negative, and #(t) is the entropy flux rate from the system to the environment. For systems in
a non-equilibrium steady state (NESS), we have dS/dt = 0, which implies

"0 = #0 ! 0.

It is only in thermodynamic equilibrium that the inequality in this equation becomes an
equality.

Traditionally, non-equilibrium thermodynamics was founded on the basis of conservation
equations. Nowadays, however, it has been realized that there are several advantages in using
stochastic processes instead. For instance, by comparing forward and backward experiments,
it enables one to relate the entropy production directly to the stochastic trajectories of the
system [2–5]. When describing a non-equilibrium system in terms of stochastic processes,
much of the focus has naturally been on Markovian dynamics, in particular using the master
equation [2, 3, 6–8] or the Fokker–Planck approach [4, 9, 10], which will be the choice for this
paper. We also note that non-Markovian dynamics have also been recently investigated [11].

Several formulas for the entropy production rate have been derived for both
representations. In all cases, however, these are written in terms of integrals involving
probability currents (cf section 3). Thus, they are not easily computed in most situations.
In this paper, we will focus on linear Langevin systems; i.e., where all terms appearing in
the stochastic differential equations are linear in the independent variables. First of all, one
must always emphasize the importance of linear systems in view of the many circumstances
in which they appear in nature. Moreover, we will show that, for such systems, it is possible
to obtain exact formulas for the entropy production rate in terms of the means and variances
of the independent variables. This enables one to study more complex situations, which are
prohibitive for nonlinear systems. In fact, with the scheme to be derived below, it is possible
to implement extremely efficient numerical procedures to study the entropy production even
in large-scale systems.

The entropy production gives an insight into the properties of systems out of equilibrium.
And with the formulas developed in this paper, it becomes simple to compute the entropy
production even for the most complex linear systems. Moreover, these results are not restricted
to the steady state as in most recent papers, but also naturally include the time dependence.
We thus hope that these results are of value to deepen our understanding of non-equilibrium
physics.

When discussing entropy production, it is paramount to distinguish between variables
that are even and odd under time reversal. With this in mind, we shall illustrate our results by
applying them to electrical circuits. These are excellent platforms for this type of problem,
since they contain mixed even (charge and voltage) and odd (current) variables. These studies
trace back to the works of Landauer [12], and the discussion about the differences between
the minimum entropy principle and the maximum entropy principle. They were also recently
discussed in [13] using the Onsager–Machlup Lagrangian [14].

The problem and the basic underlying equations will be stated in section 2. General
remarks about the entropy production rate will be given in section 3 and the derivation of the
formulas for linear systems will be carried out in section 4. Some of the lengthier calculations
were postponed to the appendix. The applications in electrical circuits are contained in section 5
and the conclusions in section 6.
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With the exception of section 5, we shall try to maintain the following notation. Vectors are
denoted by lower-case letters, such as x = (x1, . . . , xn) and matrices by upper-case letters such
as A and B. The exception will be random variables, such as X , which will also be in upper-case
letters. All vectors are treated as column vectors, with xT representing the corresponding row
vector. Scalars and scalar functions are denoted by calligraphic letters, such asS or P (the only
exception being " and # in equation (1)). The gradient of P with respect to x is abbreviated
as ∂P/∂x.

2. Systems described by Langevin equations

2.1. The Langevin equation

Let X = (X1, . . . , Xn) be a vector of random variables satisfying

Ẋ = f (X, t) + Bξ̇ (t). (2)

In this equation, f (x, t) is an arbitrary n-dimensional function of x and the time t. ξ (t) are
m-independent standard Wiener processes and, therefore, B is an n × m matrix1. In this paper,
we shall focus mainly on linear systems, for which we write

f (x, t) = −Ax + b(t), (3)

where A is n × n and b(t) is an arbitrary n-dimensional function of time. We shall also
make the reasonable assumption that all eigenvalues of A are in the open right-plane, thence
guaranteeing the stability of the solutions.

The expectation of x is denoted by x̄ = ⟨X⟩, both notations being used interchangeably.
The equation for the time evolution of x̄ is obtained directly by taking the expectation of
equation (2):

dx̄
dt

= f (x̄, t) = −Ax̄ + b(t). (4)

Next, we obtain the equation describing the time evolution of the second moments. The
latter can be constructed from the outer product ⟨XXT⟩, which gives a matrix whose (i, j)th
entry is ⟨XiXj⟩. The result—obtained, for instance, by discretizing time, taking the outer
product and then averaging—is

d⟨XXT⟩
dt

= X f T + f XT + BBT. (5)

For linear systems, it is more convenient to work with the covariance matrix:

& = ⟨XXT⟩ − ⟨X⟩⟨X⟩T. (6)

Note that & is symmetric by construction. Moreover, being a covariance matrix, it is also
positive definite. Using equations (4) and (5) and assuming linearity, as in equation (3), we
find that

d&

dt
= −(A& + &AT) + 2D (7)

which is a matrix differential equation giving the time evolution of the covariance matrix.
Here, D is the n × n diffusion tensor defined as

D = 1
2 BBT. (8)

If B has full row rank, then D is positive definite; otherwise, it is positive semi-definite.

1 Choosing B to be n × m is convenient because it includes the possibilities that a variable contains more than one
source of noise or that the same noise is shared with more than one variable.
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Equation (7) shows an important property of linear systems of Langevin equations, which
is seldom discussed in the literature: all terms involving the external forcing term, b(t),
are dropped out. This means that the variability of the random variables in question is not
influenced by external forces. In other words, we could say linear systems are not amenable
to synchronization.

If b(t) = b, a constant, then the system will eventually reach equilibrium. (We are making
the explicit assumption that A is stable.) The equilibrium value of x̄ is read immediately from
equation (4): x̄0 = A−1b. Similarly, setting &̇0 = 0 in equation (7), we obtain the matrix
equation

A&0 + &0AT = 2D. (9)

This is a very important equation. It appears frequently in the literature of electrical engineering
and control systems where it goes by the name of continuous time Lyapunov equation. It is
also a particular case of the broader class of Sylvester equations.

It seems appropriate to stop now to briefly discuss the solution methods of equation (9).
For algebraic solutions, we can transform it into a linear system of equations as follows. Let
A ⊗ B denote the Kronecker product of two matrices A and B and define the operation vec(A)

as that of creating a vector by stacking the columns of A. Then equation (9) can be written as

[(I ⊗ A) + (A ⊗ I)]vec(&0) = 2vec(D). (10)

Given that & is symmetric, several equations will be repeated and, in the event that A is sparse,
several equations will be of the form 0 = 0, thence simplifying somewhat the computations.
On the other hand, this approach should never be used for numerical calculations. The
computational complexity of equation (10) is O(n)6. However, specialized algorithms have
been developed which reduce this to O(n)3, a substantial improvement [15].

2.2. The Fokker–Planck equation

Let P(x, t) denote the probability density function corresponding to the vector of random
variables X . The Fokker–Planck equation for P(x, t) associated with the general Langevin
equation (2) reads

∂P
∂t

= −
∑

j

∂

∂x j
[ f j(x, t)P] +

∑

j,k

∂2

∂x j∂xk
[DjkP]. (11)

It is also convenient to write this equation in the form of a continuity equation. For this, let us
define the probability current

g(x, t) = f (x, t)P(x, t) − D
∂P(x, t)

∂x
. (12)

Equation (11) can then be written as
∂P
∂t

= − ∂

∂x
· g, (13)

where the operation in the right-hand side denotes the divergence of g.
The Fokker–Planck equation for linear systems satisfies the very important property that

its solution must be of the form of a multivariate normal distribution2:

P(x, t) = 1√
(2π )n|&|

exp
{
−1

2
(x − x̄)T&−1(x − x̄)

}
, (14)

2 This can be understood intuitively by noting that, upon discretizing time in equation (2), xt+!t is formed by
summing normally distributed random variables (!ξ and xt ). But sums of normally distributed random variables must
also be normally distributed and so will xt+!t .
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where x̄ and & are given by equations (4) and (7) (both being, in general, functions of time,
which has been omitted for clarity). Here |&| denotes the determinant.

In the event that b(t) is a constant, the system will reach a steady state whose distribution
is

P0(x) = 1√
(2π )n|&0|

exp
{
−1

2
(x − x̄0)

T&−1
0 (x − x̄0)

}
, (15)

where x̄0 = A−1b and &0 is given by equation (9).
Throughout this paper, we will make frequent use of the fact that both P(x, t) and ∂P/∂x

vanish at the boundaries of the probability space, so that cross terms appearing when integrating
by parts can always be neglected.

2.3. Distinction between variables that are even and odd under time reversal

In studying the entropy production, it is important to distinguish between odd variables,
which reverse sign under time reversal, and even variables, which do not. Examples of even
variables include the position in mechanical systems and charges or voltages in circuits, their
odd counterparts being velocities and currents. Following [4] and [16], let us define, for each
variable xi, a quantity ϵi, such that ϵi = ±1 if xi is even or odd, respectively. Moreover, let
us define a diagonal matrix E = diag(ϵ1, . . . , ϵn). Then, time reversal is achieved by the
operation x → Ex.3

Let us also divide f (x, t) in equation (2) into irreversible and reversible parts:

f (x, t) = f irr(x, t) + f rev(x, t), (16)

where

f irr(x, t) = 1
2 [ f (x, t) + E f (Ex, t)] = E f irr(Ex, t)

f rev(x, t) = 1
2 [ f (x, t) − E f (Ex, t)] = −E f rev(Ex, t). (17)

It is convenient to separate even and odd variables by writing x = (x1, x2), where it is
agreed that x1 contains all even variables and x2 all odd ones (the dimensions of x1 and x2

depending on the problem in question). We then have that

Ex = (x1,−x2). (18)

Let us also define

A =
[

A11 A12

A21 A22

]
, (19)

where the block matrices Ai j have dimensions compatible with those of x1 and x2. Then,
according to equation (17), we may write

A = Airr + Arev, (20)

where

Airr =
[

A11 0
0 A22

]
, Arev =

[
0 A12

A21 0

]
. (21)

Finally, we divide the external forcing term b(t) as b(t) = (b1(t), b2(t)) with b1 and b2 having
the same dimensions as x1 and x2. It then follows again from equation (17) that

birr = (b1, 0), brev = (0, b2). (22)

3 The matrix E satisfies E−1 = E. Moreover, while this will not be necessary in this paper, it is interesting to note
that the operators 1

2 (I ± E ) may be used to select the even and odd variables, respectively.
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Explicit examples of this separation are given in section 5 for several types of electric circuits.
It will also be important to distinguish the irreversible and reversible parts of the probability

current:

g = girr + grev, (23)

where

girr(x, t) = f irr(x, t)P(x, t) − D
∂P(x, t)

∂x
(24)

grev(x, t) = f rev(x, t)P(x, t). (25)

2.4. Conditions for equilibrium

In the steady state, Ṗ0 = 0 and thence ∂
∂x · g0 = 0. Moreover, the probability currents g0(x)

should be such that even components change sign under time reversal, whereas odd components
do not, i.e.,

g0(x) = −Eg0(Ex). (26)

Using the definitions in equations (23)–(25), we find

g0(Ex) = [ f rev(Ex) + f irr(Ex)]P0(Ex) − D
∂P0(Ex)

∂Ex
.

With the aid of equation (17), this may be written as

g0(Ex) = E[− f rev(x) + f irr(x)]P0(Ex) − DE
∂P0(Ex)

∂x
.

Whence,

g0(x) + Eg0(Ex) = f rev(x)[P0(x) − P0(Ex)] + f irr(x)[P0(x) + P0(Ex)]

− D
∂P0(x)

∂x
− EDE

∂P0(Ex)

∂x
= 0. (27)

If P0(Ex) = P0(x) (the distribution is an even function of the odd variables), the first term in
equation (27) vanishes. Moreover, if EDE = D (which is generally true if D is diagonal or
block-diagonal), then by comparing equation (27) with definition (24), we conclude that

girr
0 ≡ f irr(x)P0(x) − D

∂P0(x)

∂x
= 0,

i.e., the irreversible portion of the current is zero in the steady state. This condition has already
been discussed in the context where D is diagonal [16]. For the more general case presented
here, we see that the two conditions for this to happen are that P0(Ex) = P0(x) and EDE = D.

Being this the case, we find from ∂
∂x · g0 = 0 that

∂

∂x
· grev

0 =
[

∂

∂x
· f rev(x)

]
P0 + [ f rev(x)]T ∂P0

∂x
= 0.

In most physical systems, the reversible part of the force, f rev(x), is divergence less:
∂

∂x
· f rev(x) = 0. (28)

In this case, we may use equation (24) to write ∂P0
∂x = D−1 f irr(x)P0(x) so as to finally arrive

at

[ f rev(x)]TD−1[ f irr(x)] = 0. (29)

This is the required condition for equilibrium. It says that the vectors f rev and f irr should be
orthogonal in a space whose metric is D−1. In the event that D is semi-definite, then by D−1

we mean the pseudo-inverse of D.
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3. Entropy production: general statement

The following calculations follow closely those of [9], but generalize it in two ways. First, it
includes systems with arbitrary combinations of even and odd variables and second, it includes
non-diagonal Ds.

The entropy is defined as

S = −
∫

P logP dx. (30)

Differentiating with respect to time, using equation (13) and integrating by parts, we find
dS
dt

= −
∫

∂P
∂t

logP dx = −
∫

gT ∂P
∂x

dx
P

. (31)

Separating g as in equation (23), we find for the term involving grev after integrating by parts

−
∫

(grev)T ∂P
∂x

dx
P

=
∫ [

∂

∂x
· f rev

]
P dx = 0,

since we are assuming f rev is divergence less [cf equation (28)]. Hence, equation (31) becomes
dS
dt

= −
∫

girrT ∂P
∂x

dx
P

. (32)

Next, we use equation (24) to write
∂P
∂x

= D−1[ f irr(x, t)P − girr(x, t]

and obtain
dS
dt

=
∫

girrT
D−1girr dx

P
−

∫
girrT

D−1 f irr dx. (33)

The first term is a quadratic form. Since, D is positive definite, it is always non-negative and
can thence be identified with the entropy production rate:

"(t) =
∫

girrT
D−1girr dx

P
. (34)

Consequently, the entropy flux rate is found to be

#(t) = −
∫

girrT
D−1 f irr dx. (35)

Using a different approach, equation (34) was further separated in [4] into three terms.
These, unlike equation (34), hold only for diagonal D. They also assume that a steady-state,
time-independent, configuration exists. Usually, we will simply take this to mean that b(t) = b,
a constant. In our present notation, the formulas are

"1(t) = −
∫

∂P
∂t

log
P(x, t)
P0(x)

dx (36)

"2(t) =
∫ [

girr
0 (Ex)

]TD−1[girr
0 (Ex)

]T P(x, t)
[P0(Ex)]2

dx (37)

"3(t) = −
∫

∂P
∂t

log
P0(x)

P0(Ex)
dx, (38)

where P0 is given by equation (15) and girr
0 is obtained from girr in equation (24) by replacing

P with P0. The first contribution, termed nonadiabatic, is related to the relaxation processes of
the system and should be zero at a NESS. On the other hand, the second contribution, termed
adiabatic, is directly related to the absence of detailed balance in the system and will be the
sole contribution to " when a NESS is reached. Both "1 and "2 have been shown [4] to obey
integral fluctuation theorems. However, the same is not true of the third term, "3.
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4. Entropy production for linear systems

The last section summarized a series of results valid for general Langevin systems. In this
section, we shall specialize them to linear systems, as in equation (3), and obtain formulas for
all relevant quantities. The major advantage of considering linear systems is that all results
can be expressed in terms of x̄ and &, thus avoiding the necessity of performing the several
integrals involved in those expressions.

4.1. Rate of the change of the total entropy

We begin with the total rate of change of the entropy. Substituting equation (14) for logP in
equation (30), we find

S = 1
2

∫
[(x − x̄)T&−1(x − x̄) + log(2π )n|&|]P dx.

The last term is simply log(2π )n|&|. To compute the first term, we proceed as follows.
Since & is symmetric positive definite, we can construct its square, triangular Cholesky
factorization & = QQT. Now, consider the transformation x = Qz + x̄. It transforms
(x − x̄)T&−1(x − x̄) = zTz. Whence, we see that this transformation produces a standard
multivariate normal, where all variables are statistically independent. Hence, the first term
acquires the form ⟨zTz⟩ = n. We thus obtain

S(t) = 1
2

log |&(t)| + n
2

log(2πe). (39)

Differentiating equation (39) with respect to time and using a known formula of matrix
calculus yields

dS
dt

= 1
2

tr
(

&−1 d&

dt

)
. (40)

From equation (9), we have

&−1 d&

dt
= −[&−1A& + AT] + 2&−1D.

The matrices AT and &−1A& are similar, and thence share the same trace. Thus, equation (40)
becomes

dS
dt

= tr(&−1D − A), (41)

where &−1 is generally a function of time. This is the required formula. It gives the rate of
change of the total entropy of the system, which is seen to be a function of only the inverse of
the covariance matrix, &−1. Note, as before, that Ṡ is entirely independent of b(t). (The same
will not be true for " and #.)

In the steady state, we set Ṡ = 0 in equation (41) to find

tr
(
&−1

0 D − A
)

= 0. (42)

This relation can also be derived directly from the steady-state solution, equation (9), by
multiplying both sides by &−1

0 and then taking the trace.

4.2. Entropy production rate and entropy flux rate

We now derive formulas for " and #. The formulas for "1, "2 and "3 are derived by similar
methods in the appendix. Before we proceed, let us establish a convenient mathematical

8
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operation which will be used extensively, specially in the appendix. We will frequently
encounter quantities of the following form:

∫
(Fx + u)T(Gx + v)P(x, t) dx

which correspond to an average over P(x, t) of a quadratic form; here, F , G, u and v are
arbitrary matrices and vectors. When we expand the product, there will be only one term that
is of second order in x, which will have the form xTFTGx. Taking the expectation of this term
yields

⟨xTFTGx⟩ =
∑

i j

(FTG)i j⟨xix j⟩.

Next, we use equation (6) to write ⟨xix j⟩ = &i j + x̄ix̄ j, which results in

⟨xTFTGx⟩ = tr(FTG&) + x̄TFTGx̄.

The last term is again a quadratic form and may thus be reincorporated into the original
product. We thus arrive at the following relation:

∫
(Fx + u)T(Gx + v)P(x, t) dx = tr(FTG&) + (Fx̄ + u)T(Gx̄ + v). (43)

That is, whenever we average a quadratic form, there will be a trace term containing & and
the original term inside the integral, with x replaced by x̄.

With this result, it is now straightforward to compute the entropy production rate in
equation (34). From equation (14), we have

∂P
∂x

= −&−1(x − x̄)P(x, t). (44)

Using this in equation (24), we find

girr = (−Airrx + birr)P − D
∂P
∂x

= [(D&−1 − Airr)x + birr − D&−1x̄]P (45)

= (Fx + u)P,

where we have defined F = D&−1 − Airr and u = birr − D&−1x̄. By applying the method
described in equation (43), we obtain

"(t) =
∫

(Fx + u)TD−1(Fx + u)P dx

= tr(FTD−1F&) + (Fx̄ + u)TD−1(Fx̄ + u).

Using that Fx̄ + u = birr − Airrx̄ and expanding the matrix product inside the trace, we finally
find that

"(t) = tr(D&−1 − Airr) + tr(AirrT
D−1Airr& − Airr) + (Airrx̄ − birr)TD−1(Airrx̄ − birr), (46)

which is the required result.
We can identify the first term in equation (46) as being simply dS/dt in equation (41).

Hence, from equation (1), we immediately find

#(t) = tr(AirrT
D−1Airr& − Airr) + (Airrx̄ − birr)TD−1(Airrx̄ − birr). (47)

This result can also be easily derived from equation (35) using the same method.
In the steady state, making use of equation (42), we find

"0 = #0 = tr(AirrT
D−1Airr&0 − Airr) + (Airrx̄0 − birr)TD−1(Airrx̄0 − birr). (48)

9
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We can also use the same approach to derive formulas for the three contributions to
the entropy production rate defined in equations (36)–(38). These calculations, however, are
somewhat lengthier. Thus, we will simply state the results here and postpone the details to
the appendix. We emphasize, once again, that these results are valid only for diagonal D and
constant b.

First, the result for "1(t) is

"1(t) = tr(D&−1 − A) + tr
(
AT&−1

0 & − A
)
+ (x̄ − x̄0)

T&−1
0 D&−1

0 (x̄ − x̄0). (49)

The nature of "1, as being related to the relaxation of the system, becomes quite visible from
the structure of this formula. Next, we obtain for "2

"2(t) = tr(AirrT
D−1Airr&) − tr(ATE&−1

0 E&) +
(
Airrx̄ − birr)TD−1(Airrx̄ − birr)

− (Ax̄ − b)TE&−1
0 (Ex̄ − x̄0). (50)

Finally, the result for "3 is

"3(t) = tr
(
ATE&−1

0 E& − A
)
− tr

(
AT&−1

0 & − A
)
+ (Ax̄ − b)TE&−1

0 (Ex̄ − x̄0) (51)

− (x̄ − x̄0)
T&−1

0 D&−1
0 (x̄ − x̄0). (52)

5. Application to electrical circuits

Henceforth, we will soften our previous notation of vectors and matrices and use the usual
nomenclature of electrical circuits. We shall consider electrical circuits connected to different
heat baths. The coupling constant is, in this case, the resistance R. The fluctuations will be
assumed to correspond to white noise with spectral density given by the Jonhson–Nyquist
formula

√
2RT , where T is the temperature of the bath.

5.1. RL circuit in series

We begin by considering a simple, yet very instructive, example of a resistor R and an inductor
L in series with a battery providing a constant emf E . The independent variable is the current
I through the resistor, which is odd under time reversal. The equation for the time evolution
of I is obtained from Kirchhoff’s voltage law:

dI
dt

= −R
L

I + E
L

+
√

2RT
L2

ξ̇ . (53)

Making reference to the notation of section 2.1 (all matrices are now 1×1), we have A = R/L,
b = E/L, B =

√
2RT/L2 and D = (1/2)BBT = RT/L2. For simplicity, we will assume

I(t = 0) = 0. The expectation of I as a function of time is obtained by solving equation (4):

Ī(t) = E
R

(1 − e−Rt/L). (54)

The steady-state current is clearly seen to be Ī0 = ER. The covariance ‘matrix’ is & = ⟨I2⟩− Ī2

and satisfies the differential equation [cf equation (7)]
d&

dt
= −2R

L
& + 2RT

L2
(55)

whose solution is

&(t) = T
L

(1 − e−2Rt/L). (56)

10



J. Phys. A: Math. Theor. 46 (2013) 395001 G T Landi et al

0 1 2 3 4 5

0

2

4

6

8

10

t

2 RT

a

0 1 2 3 4 5
10

5

0

5

10

t

2 RT

b

Figure 1. Entropy production as a function of time for an RL circuit with E = 2V, R = 1),
L = 1H and kBT = 1/2J. (a) dS/dt (blue, dotted), #(t) (red, dashed) and "(t) (black); the dotted
line indicate the NESS value "0 = "2 = E2/RT . (b) The different contributions to the entropy
production rate, "1 (blue, dotted), "3 (red, dashed) and " (black). Again, "2 is given by the
dotted horizontal line.

The current is an odd variable under time reversal. Thence, we have from equation (21)
that Airr = A = R/L and from equation (22), birr = 0. With this in mind, the entropy production
rate is readily computed from equation (46):

"(t) = E2

RT
(1 − e−Rt/L)2 + R

L
e−2Rt/L

e2Rt/L − 1
. (57)

If we take the limit t → ∞, we obtain for the NESS entropy production rate

"0 = #0 = E2

RT
=

RĪ2
0

T
. (58)

This formula shows that, in the NESS, there is a constant production of entropy due to the
dissipation in the resistor.

The formula for the total rate of change of the entropy is

dS
dt

= R
L

1
e2Rt/L − 1

.

The entropy flux rate is then simply # = " − dS/dt. These quantities are illustrated in
figure 1(a) for arbitrary values of the parameters.

11
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Figure 2. Scheme of the circuit studied in section 5.2. Each resistor is connected to a heat bath at
a different temperature.

If we had instead studied an RC circuit then the independent variable would be the voltage
through the resistor, which is even under time reversal. In this case, the formulas would be
quite similar, except that now the emf would be a part of birr. The resulting expression for
the entropy production would now go to zero as t → ∞, since, in an RC circuit, the current
(which is responsible for the dissipation) goes to zero as t → ∞.

Continuing further, we may now compute formulas for the three parts of the entropy
production rate, equations (49)–(51):

"1(t) = E2

RT
e−2Rt/L + R

L
e−2Rt/L

e2Rt/L − 1

"2(t) = E2

RT

"3(t) = −2
E2

RT
e−Rt/L.

These formulas are physically very rich. Note that "2, which is exactly the contribution related
to the absence of detailed balance, is simply the steady-state entropy production rate "0 in
equation (58). Graphs for these quantities are illustrated in figure 1(b).

5.2. Mixed RC and RL circuits

Let us now turn to the circuit denoted in figure 2, which was also studied in [13]. We now
have, as independent variables, the voltage U through resistor R1 and the current I through
the resistor R2; i.e., we have mixed even and odd variables. Using Kirchhoff’s voltage law, we
find the equations

U̇ = I
C

− U
R1C

+

√
2T1

R1C2
ξ̇1 (59)

İ = E − U − R2I
L

+
√

2R2T2

L2
ξ̇2. (60)

In our usual matrix notation, we have from equation (21)

Airr =
[

1/CR1 0
0 R2/L

]
, Arev =

[
0 −1/C

1/L 0

]

and from equation (22)

birr = 0, brev = b =
[

0
E/L

]
.

12
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The diffusion matrix, equation (8), is

D =
[

T1/R1C2 0
0 R2T2/L2

]
.

The formulas for the time dependence of the entropy production rates are now somewhat
cumbersome. Thus, we will illustrate their time dependence numerically and provide formulas
only for the steady-state quantities. The equilibrium values of U and I are

Ū0 = R1

R1 + R2
E, Ī0 = 1

R1 + R2
E .

The steady-state values of the covariance matrix are obtained by solving equation (9) (the
notation Var and Cov meaning variance and covariance, respectively):

Var(U ) = α

C
[L(R1 + R2)T1 + CR1R2(R2T1 + R1T2)]

Var(I) = α

L
[L(R1T1 + R2T2) + CR1R2(R1 + R2)T2]

Cov(U, I) = α[R1R2(T2 − T1)]

α := [(R1 + R2)(L + CR1R2)]−1.

From these results, we may now compute the steady-state entropy production rate from
equation (48):

"0 = #0 = Ū0

R1T1
+ R2 Ī0

T2
+ R1R2(T2 − T1)

2

(R1 + R2)(L + CR1R2)T1T2
. (61)

The structure of this result is worth noticing. The first two terms are similar to those appearing
in equation (58), each one corresponding to a resistor. They stem from the absence of detailed
balance, related to the presence of the batteries. In addition to these, however, there is now a
second term related to the lack of detailed balance due to the presence of two heat baths. We
see that it depends only on (T1 − T2)

2. It is thus zero when both temperatures are equal and
shows that it is irrelevant which temperature is the largest.

It is worth comparing equation (61) with a similar result obtained for the same circuit
in [13]. There, the third term was not present. This follows because, in the formalism of the
Onsager–Machlup Lagrangian [14], the entropy production rate is related to the extremum of
the Lagrangian with respect to the independent variables. Since the last term in equation (61)
is independent of U and I, it does not appear in that formalism.

In figure 3(a), we show the total rate of change of the entropy, the entropy production
rate and the entropy flux rate as a function of time, for arbitrary choices of the parameters.
Figure 3(b) then shows the three contributions to the entropy production rate.

5.3. Inductively coupled RL circuits

Next, we turn to the interesting example of two inductively coupled RL circuits, each connected
to a different heat bath. Let the suffixes 1 and 2 denote the quantities pertaining to the two
circuits and let m denote the mutual inductance. Then, the corresponding dynamical equations
are

L1 İ1 + mİ2 = −R1I1 + E1 +
√

2R1T1ξ̇1

mİ1 + L2 İ2 = −R2I2 + E2 +
√

2R2T2ξ̇1.

13
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Figure 3. Entropy production as a function of time for the circuit in figure 2, with E = 2V, R = 2),
R2 = 1), L = 1H, C = 0.2F, kBT1 = 1 J and kBT2 = 2 J. (a) dS/dt (blue, dotted), #(t) (red,
dashed) and "(t) (black). (b) The different contributions to the entropy production rate, "1 (blue,
dotted), "2 (red, dashed) and "3 (green, dash–dotted); "(t) is again shown in black.

Let us define the matrix

M =
[

L1 m
m L2

]
.

Then, in the notation of equation (2), we have

A = M−1
[

R1 0
0 R2

]

and

D = M−1
[

R1T1 0
0 R2T2

]
M−1.

In this case, we see that the diffusion matrix D is not diagonal, so formulas (49)–(51) are not
applicable. We will thus restrict our discussion to the steady-state expression for the entropy
production rate. The steady-state currents are simply

Ī10 = E1

R1
, Ī20 = E2

R2
.

The steady-state covariance matrix is computed from equation (9). It reads

&0 =
[

T1
mR2(T1−T2)
L2R1+L1R2

mR1(T2−T1)
L2R1+L1R2

T2

]

M−1.
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On noting that both variables are odd under time reversal, we obtain from equation (48)

"0 =
E2

1

R1T1
+

E2
2

R2T2
(62)

+ m2R1R2

(L1L2 − m2)(L2R1 + L1R2)

(T1 − T2)
2

T1T2
. (63)

Again, we arrive at a structure compatible with the two sources of disorder: the first two terms
come from the batteries and the last from the presence of two heat baths. As expected, the
last term goes to zero when m → 0, since the mutual inductance is the sole mechanism of
coupling in the system.

Finally, it is also illustrative to consider three inductively coupled RL circuits. For
simplicity, we will make the assumption that all mutual inductances and self-inductances
are the same, being m and L, respectively. The result is then

"0 =
E2

1

R1T1
+

E2
2

R2T2
+

E2
3

R3T3
+ m2

W
[α1T1(T2 − T3)

2

+α2T2(T1 − T3)
2 + α3T3(T1 − T2)

2]
1

T1T2T3
,

where

W = (L − m)(L + 2m)[2m2R1R2R3 + L(L + m)(R1 + R2)(R2 + R3)(R1 + R3)]

and

α1 = R2R3
[
2mR2

1 + L(R1 + R2)(R2 + R3)
]

with similar expressions for α2 and α3. Again, the results depend only on the temperature
differences, as expected.

6. Conclusions

In conclusion, we have studied the entropy production rate in systems of linear Langevin
equations. Linearity and its consequences enabled us to compute formulas for (i) the total rate
of change of the entropy, (ii) the entropy production rate per se, (iii) the entropy flux rate
and (iv) the three contributions to the entropy production stemming from different physical
sources. All these formulas were expressed in terms of the mean and covariance matrix of the
random variables in question. This makes their implementation in large-scale systems quite
easy. Our results were applied to electrical circuits of various types. For instance, we have
shown that two circuits which are coupled only via their mutual inductance have a steady-state
entropy production rate related to the difference in temperature between the two circuits.
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Appendix. The three parts of the entropy production rate

In this section, we describe the steps to obtain formulas (49)–(51) from equations (36)–(38).
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A.1. Equation for "1(t)

We begin with "1 in equation (36), which can be written as

"1(t) = dS
dt

+ +1, (A.1)

where dS/dt is given by equation (41) and

+1(t) =
∫

∂P
∂t

logP0(x) dx. (A.2)

Using the FP equation (13) and integrating by parts, we find

+1 =
∫

gT ∂P0(x)

∂x
dx

P0(x)
.

Similarly to equation (44), we have ∂P0(x)/∂x = −&−1
0 (x − x̄0)P0(x). Using also

equation (45), but with g instead of girr; i.e., with F = D&−1 − A and u = b − D&−1x̄,
we find

+1 = −
∫

(Fx + u)T&−1
0 (x − x̄0)P(x, t) dx.

Using the method of equation (43), we obtain

+1 = −tr(FT&0&) − (Fx̄ + u)T&0(x̄ − x̄0).

This can be simplified to read

+1(t) = tr
(
AT&−1

0 & − A
)
+ (Ax̄ − b)T&−1

0 (x̄ − x̄0). (A.3)

The last term in equation (A.3) can also be modified as follows. Multiplying both sides
of equation (9) by &−1

0 , we find

&−1
0 A + AT&−1

0 = 2&−1
0 D&−1

0 . (A.4)

Now, let y be an arbitrary vector. Noting that yTMy = yTMTy, we find

yT&−1
0 Ay + yTAT&−1

0 y = 2yTAT&−1
0 y

= 2yT&−1
0 D&−1

0 y.

Using this and recalling that b = Ax̄0, we may write

(Ax̄ − b)T&−1
0 (x̄ − x̄0) = (x̄ − x̄0)

TAT&−1
0 (x̄ − x̄0)

= (x̄ − x̄0)
T&−1

0 D&−1
0 (x̄ − x̄0).

Using this result in equation (A.3) and substituting in equation (A.1), we finally obtain
equation (49).

A.2. Equation for "3(t)

Let us next compute "3 in equation (38). It can be written as

"3(t) = +2(t) − +1(t), (A.5)

where +1(t) is given by equation (A.2) or (A.3) and

+2(t) =
∫

∂P(x, t)
∂t

logP0(Ex) dx

=
∫

g(x, t)T ∂P0(Ex)

∂x
dx

P0(Ex)
. (A.6)

16



J. Phys. A: Math. Theor. 46 (2013) 395001 G T Landi et al

We now have
∂P0(Ex)

∂x
= −E&−1

0 (Ex − x̄0)P0(Ex).

Using again the definitions F = D&−1 − A and u = b − D&−1x̄, we find

+2 = −
∫

(Fx + u)TE&−1
0 (Ex − x̄0)P(x, t) dx.

Using the method of equation (43), we obtain

+2 = −tr(FTE&0Eθ ) − (Fx̄ + u)TE&0(Ex̄ − x̄0).

The first term reads

−tr(FTE&0Eθ ) = tr
(
ATE&−1

0 E& − &−1DE&−1
0 E&

)
.

For the last term, we may use the cyclic property of the trace to write it as tr(EDE&−1
0 ).

However, since D is diagonal, we have that EDE = D. Whence, the last term is simply
tr(D&−1

0 ) = tr(A), according to equation (42).
Collecting our results, we finally conclude that

+2(t) = tr
(
ATE&−1

0 E& − A
)
+ (Ax̄ − b)TE&−1

0 (Ex̄ − x̄0). (A.7)

Using this and equation (A.3) in equation (A.5), we finally obtain equation (51).

A.3. Equation for "2(t)

Finally, we turn to "2 in equation (37). We begin by writing

girr
0 (Ex) =

[(
D&−1

0 E − AirrE
)
x + birr − D&−1

0 x̄0
]
P0(Ex)

= (Fx + u)P0(Ex). (A.8)

We then have

"2 =
∫

(Fx + u)TD−1(Fx + u)P(x, t) dx

= tr(FTD−1F&) + (Fx̄ + u)TD−1(Fx̄ + u). (A.9)

Let us first simplify the trace term

tr(FTD−1F&) = tr
[
E&−1

0

(
D&−1

0 − 2Airr)E&
]
+ tr(EAirrT

D−1AirrE&). (A.10)

The first term can be simplified as follows. First, we note the following relation stemming
from equations (19)–(21):

Airr = 1
2 (A + EAE ). (A.11)

Using this in the first term of equation (A.10), we find

tr
[
E&−1

0

(
D&−1

0 − 2Airr)E&
]

= tr
[
E&−1

0

(
D&−1

0 − A
)
E&

]
− tr

(
E&−1

0 EA&
)
.

Similarly to the first term in equation (A.7), the last term in this equation can be written as
tr(ATE&−1

0 E&). Moreover, the first term is zero, which may be shown by substituting

D&−1
0 = 1

2

(
A + &0AT&−1

0

)
.

Finally, the last term in equation (A.10) can be written as tr(AirrTD−1Airr&). This is a direct
consequence of the structure of Airr in equation (21) and the fact that we are assuming D to
be diagonal. In fact, for a non-diagonal D, this simplification would not occur and this term
would not correctly match its counterpart appearing in equation (46). Thus, we conclude that

tr(FTD−1F&) = tr(AirrT
D−1Airr&) − tr

(
ATE&−1

0 E&
)
. (A.12)
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For the second term in equation (A.9), we now have

Fx̄ + u = D&−1
0 (Ex̄ − x̄0) + birr − AirrEx̄.

Expanding the quadratic form, using equation (A.11) and simplifying finally yields the required
corresponding term in equation (50).
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