
Chapter 3

Ferromagnetism alla Ising

3.1 Introduction

In certain alloys, particularly those containing Fe, Co or Ni, the electrons
have a tendency to align their spins in a common direction. This phenomenon is
called ferromagnetism and is characterized by the existence of a finite magne-
tization even in the absence of a magnetic field. It has its origin in a genuinely
quantum mechanical e↵ect known as the exchange interaction and related to
the overlap between the wave functions of neighboring electrons.

The spin ordering diminishes as the temperature of the sample increases
and, above a certain temperature Tc, the magnetization vanishes entirely. This
is a phase transition and Tc is called the critical temperature or the Curie
temperature. A typical behavior of the magnetization M(T ) as a function
of temperature is shown in Fig. 3.1(a). Below Tc the magnetization is finite
and the material is termed ferromagnetic. At Tc the magnetization becomes
identically zero and for T > Tc the material behaves like the paramagnets we
have studied before. The values of Tc for some selected materials are shown in
Table 3.1. Magnetite (Fe

2

O
3

) was historically the first magnetic material found
in nature.1 A funny example is Gd. It has Tc = 292 K = 19 o C and there-
fore is ferromagnetic in the winter, but paramagnetic in the summer. Another
important example is Nd

2

Fe
14

B. It was developed in 1982 and nowadays has
many applications, from electric cars to fusion reactors. But its popularity has
nothing to do with its Tc value. Rather, it is because it is a hard magnet.

In terms of applications, what matters the most is the behavior of M as a
function of the magnetic field H, below Tc (above Tc the material behaves like
a paramagnet so there is nothing very interesting to see). A typical curve is
shown in Fig. 3.1(b). This type of curve is called a hysteresis loop.2 The
first part of Fig. 3.1(b), marked as 1, is what happens when you take a sample

1Fe2O3 is actually ferrimagnetic. But the idea is the same.
2 The word hysteresis means lag because the magnetization is always lagging behind the

magnetic field, in contrast to paramagnetism where a given field determines a given magneti-
zation.
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Figure 3.1: Typical behavior of a ferromagnetic material. (a) M vs. T . (b) Hys-
teresis loop, M vs. H.

Table 3.1: Curie temperature and coercive field for some selected magnetic ma-
terials. Data taken from completely untrustworthy sources around the
internet. The values of the coercive field Hc are rather arbitrary since,
as we will learn in the end of the chapter, this value depends sensibly on
many details, such as the shape of the sample and so on.

Fe
2

O
3

Fe Co Ni EuO Nd
2

Fe
14

B Gd
Tc (K) 858 1043 1400 627 69 600-700 292

µ (µB/atom) 2.22 1.72 0.6
Hc (kA/m) 0.16 0.8 0.056 900

straight out of the oven and apply a magnetic field. The magnetization simply
grows (usually much more quickly than in a paramagnetic material) towards
the saturation value. The novel e↵ect appears when we begin to reduce the field
from saturation toward zero, as in the curve marked 2 in Fig. 3.1(b). What
we see is that M does not go to zero when H ! 0, as in a paramagnet. But
rather, it stops at a finite value called the remanence. The magnetization
at remanence is precisely the function M(T ) illustrated in Fig. 3.1(a). If we
want to take M back to zero we must apply a field in the opposite direction.
The field at which M(H) = 0 is called the coercive field Hc. The coercive
field measures how “strong” can the magnet resist to external fields. Values for
selected materials are shown in Table 3.1. From these values it becomes quite
clear why Nd

2

Fe
14

B is a “hard” magnet. It has a coercive field which is more
than 10000 larger than raw iron, corresponding to a magnetic field B = µ

0

Hc

of more than 1 T. That means that a very large field must be applied in order
to demagnetize Nd

2

Fe
14

B.
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Figure 3.2: Magnetic domains in an FeSi sample observed with a Kerr polarized
optical microscope. Courtesy of A. D. Santos.

The dipolar interaction

The exchange interaction is the microscopic mechanism behind the ferro-
magnetic order. However, this e↵ect is isotropic. It causes the spins to align in
a common direction, irrespective of which direction that is. Notwithstanding, it
is well known that the magnetic properties of a material are strongly influenced
by the shape of the sample. For instance, when the sample is carved in the form
of a needle, as in a compass, there is a tendency for the magnetization to remain
in the direction of the needle. Or, you may remember those old U-shaped mag-
nets. It turns out that making the sample in the shape of a U strongly forces
the magnetization to lie along the U.

This shape dependence is a consequence of the dipolar interaction. Each
spin is a magnetic dipole and therefore produces a magnetic field which influ-
ences all other spins. The dipolar interaction is not an essential ingredient for
the existence of a phase transition; the essential ingredient is the exchange in-
teraction. However, once in the ferromagnetic phase, the dipolar interaction
becomes important and starts to compete with the exchange interaction. The
outcome is the formation of magnetic domains. Over very small distances,
the exchange energy is dominant and microscopic chunks of the material are
always magnetized in the same direction. However, having the entire material
pointing in the same direction becomes energetically costly for the dipolar in-
teraction and therefore the material divides itself into domains, each domain
possessing a di↵erent magnetization. What we measure experimentally is the
sum of the magnetization of each domain. The coercive point M(H) = 0 is
therefore precisely the point where the net e↵ect of all domains add up to zero.

Suppose now that you have a piece of iron and you apply a magnetic field
and then remove it. The sample will become magnetized, meaning that the
field will make all magnetic domains point in the same direction. In fact, iron
has the highest magnetic moment in nature, so your sample will have a very
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large magnetization. However, iron is soft. It has a low coercivity and therefore
tiny perturbations, such as hitting it with a hammer, or even thermal fluctua-
tions, will tend to reintroduce a domain structure which you will observe as a
demagnetization of your sample.

The trick to obtain a hard magnet is therefore to find a way to make the for-
mation of domains energetically costly. Historically, this was done by exploiting
the shape of the sample, like in the U-shaped magnets. The big breakthrough
of Nd

2

Fe
14

B magnets was to exploit instead the crystal structure. The Nd and
B atoms are not magnetic, only Fe is. But they are introduced so as to cre-
ate a very specific crystal structure which forces the Fe spins to prefer to be
aligned in a given direction. This is known as magnetocrystalline anisotropy.
Of course, from a technological standpoint, it may also be interesting to pro-
duce extremely soft magnets. One way to do that is by producing amorphous
materials (ie, materials which are not crystalline). That way you completely
eliminate any magnetocrystalline anisotropy.

Battle plan

We will come back to magnetism a million times again. This chapter is just a
first passage through this problem. We will therefore start by investigating the
simplest model possible containing the necessary symmetries of a ferromagnetic
system. This is the Ising model, which is the simplest model to describe
ferromagnetism. It was proposed by Wilhelm Lenz in 1920 as a PhD project to
his student Ernst Ising. We will learn that exact solutions of the Ising model
are di�cult to come by. Here we will give the solution in 1D. It can also be
solved in 2D, but we will leave that to another chapter since the solution is quite
complicated. In 3D no one has been able to solve it so far.

Then we will discuss an approximation technique called the mean-field
theory. This type of theory appear in many other areas of physics and therefore
it is a good idea to have a firm understanding of what they do. For instance,
the Hartree-Fock approximation used in electronic structure calculations is a
mean-field. They are also the basis for the BCS theory of superconductivity.

3.2 The 1D Ising model: zero magnetic field

The one-dimension Ising model, which was the one actually studied by Ising
in his PhD, is defined by a one-dimensional lattice with N sites, each being
represented by a Pauli matrix �z

i (see Fig. 3.3). The Hamiltonian is taken to be

H = �J

N�1X

i=1

�z
i �

z
i+1

(3.1)

where, in this section, we will assume there is no magnetic field. For simplicity,
we will assume J > 0, corresponding to a ferromagnetic case. Usually these
models are solved with periodic boundary conditions (which means we include
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Figure 3.3: The Ising model in 1D. Each site is described by a variable �n = ±1
and interacts with nearest neighbors with exchange constant J .

an extra term �z
N�z

1

). But in this section only we will assume open boundary
conditions, for reasons that will become clear as we move along.

This Hamiltonian is already diagonal in the |�
1

, . . . ,�N i basis, with energy
levels

E = �J

N�1X

i=1

�i�i+1

(3.2)

In total there are N spins but only N�1 bonds. The ground-state (ie the lowest
energy state) is obtained when we set all spins up:

E
gs

= �(N � 1)J (3.3)

The ground-state is therefore ferromagnetic (all spins aligned). The relevant
question is whether that remains true at finite temperatures. To do that we
must compute the partition function

Z = tr(e��H) =
X

�1,...,�N

e��E (3.4)

The partition function is a sum over all possible configurations of the spin vari-
ables �

1

, . . . ,�N . Since each �n takes on the values ±1, there is a total of
2N distinct terms in this sum. Moreover, this is not like the systems we have
worked with before, where Z factored into a product of partition functions for
each individual particle. In this case the particles interact so we must face the
full Z.

Lucky for us, there is a trick to compute Eq. (3.4). As far as I know, it
only works in this particular situation. But it is really cute so will discuss it
anyway. A more general method will be given in the next section. The idea is
to compute first the sum over �N :

Z =
X

�1,...,�N�1

e�J(�1�2+...+�
N�2�N�1)

 
X

�
N

e�J�N�1�N

!

This sum gives

X

�
N

e�J�N�1�N = e�J�N�1 + e��J�
N�1 = 2 cosh(�J�N�1

)

But now comes the fun part: cosh is an even function and �N�1

= ±1. Whence,
cosh(�J�N�1

) = cosh(J). This part of the sum therefore factors out of the
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partition function and we are left with

Z = (2 cosh�J)
X

�1,...,�N�1

e�J(�1�2+...+�
N�2�N�1)

What remains is exactly the partition function for a system with N � 1 spins.
If we continue to repeat this procedure, we get a factor of 2 cosh�J each time.
The only di↵erent term will be the last one (the sum over �

1

). It will have no
argument so we will get simply

P
�1

1 = 2. Hence, the partition function is

Z = 2(2 cosh��J)N�1 (3.5)
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Figure 3.4: Probability that the system is fully magnetized as a function of temper-
ature and the number of particles, Eq. (3.6).

Let us compute the probability that all spins are up. The probability for
any state � = (�

1

, . . . ,�N ) is, of course,

P� =
e��E

�

Z

When all spins are up, �
1

�
2

+ . . .+ �N�1

�n = (N � 1), so

P (all up) =
e�J(N�1)

2(cosh�J)N�1

=
1

2

✓
e�J

cosh�J

◆N�1

(3.6)

By symmetry, this is the same as the probability that all spins are down. This
result is plotted as a function of T in Fig. 3.4 for several values of N . As can
be seen, when N is moderately small, P (all up) changes gradually from a small
value at high T to 1/2 at T = 0. However, we see that as we increase N the
probability of finding all spins up tends to a step function, being zero above a
certain temperature and exactly 1/2 below. Moreover, this temperature where
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the jump occurs is also pushed to smaller and smaller values as N increases.
Hence, as N ! 1, P (all up) becomes discontinuous, being exactly zero for all
finite temperatures but then jumping to 1/2 exactly at T = 0. This is a strong
indication that finite temperatures destroy the ferromagnetic order (ie, that the
model is ferromagnetic only at T = 0). But before we can conclude this for
sure, we need to investigate thermodynamic quantities.

Thermal properties

I will assume N is su�ciently large and therefore replace N � 1 ' N . The
main thermodynamic quantities are then

F = �T lnZ = �T ln 2�NT ln[2 cosh(J/T )]

U = � @

@�
lnZ = �NJ tanh(J/T )

C =
@U

@T
= N

✓
J

T

◆
2

sech2(J/T )

S =
U � F

T
= ln 2 +N

⇢
� J

T
tanh(J/T ) + ln[2 cosh(J/T )]

�

These results are presented in Fig. 3.5.
In the entropy we also see a lonely term ln 2. This term is negligible in

comparison with the N -dependent term. But it has nonetheless an interesting
physical interpretation. At zero field the ground-state is two-fold degenerate
since the spins can be all up or all down. At T = 0 we know the entropy should
equal the logarithm of the degeneracy of the ground-state [cf. Eq. (2.116)]. And
this is exactly what we have here: at T = 0 the N -dependent term in S vanishes
and we are left with S(T = 0) = ln 2. On the other hand, when T ! 1, the
entropy tends to N ln 2, which is the logarithm of the total dimension of the
Hilbert space, 2N (at infinite temperatures all states become equally likely).

What about the magnetization? It turns out that for h = 0 it is a bit hard
to find it. We learned that

M = �@F

@h

But since h = 0 there is no h in F to di↵erentiate. We could try to compute
the magnetization from its definition as

M =
1

Z

X

�1,...,�N

Me��E , M =
NX

n=1

�n

However, this result will certainly be zero since the system has up-down sym-
metry: for each state with a given positive M, there will be a corresponding
state with negative M and the same probability.

In the case of the 1D Ising model this di�culty is only temporary: in the
next section we will discuss how to solve the problem with h 6= 0 [ We will learn
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Figure 3.5: Thermodynamic quantities for the Ising model under zero field

that indeed there is no ferromagnetic order, with M tending to zero as h ! 0].
However, for the Ising model in 2D this has been, historically, a big problem
because we only know the solution for h = 0. It turns out that the way to
compute the magnetization is look for two-point correlation functions which are
infinitely far apart. In a ferromagnetic phase these turn out to be proportional
to the magnetization (although demonstrating that analytically is not an easy
task).

The �-⌧ transformation

Eq. (3.5) looks a lot like the partition function for non-interacting spins in
a magnetic field, Eq. (2.45):

Z = [2 cosh(�h)]N
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This similarity is no coincidence. Consider the following transformation of vari-
ables:

⌧
1

= �
1

⌧
2

= �
2

�
1

⌧
3

= �
3

�
2

...

⌧N = �N�N�1

These ⌧n also take on the values ±1. To find the inverse formulas we use the
fact that �n = ±1, so �2

n = 1. Moreover, 1/�n = �n (I think this property quite
entertaining). We then get

�
1

= ⌧
1

�
2

= ⌧
2

/�
1

= ⌧
2

⌧
1

�
3

= ⌧
3

/�
2

= ⌧
3

⌧
2

⌧
1

...

�N = ⌧N⌧N�1

. . . ⌧
2

⌧
1

With this transformation,

J(�
1

�
2

+ . . .+ �N�1

�N ) = J(⌧
2

+ . . .+ ⌧N )

Hence, with this mapping we can transform bonds into sites. This is an exam-
ple of a duality transformation. It means that the energy (3.2) is physically
equivalent to N�1 spins under a “magnetic field” J . Using the ⌧ ’s, the partition
function becomes

Z =
X

⌧1,...,⌧N

e�J(⌧2+...+⌧
N

)

=

 
X

⌧1

1

! 
X

⌧2

e�J⌧2

!
. . .

 
X

⌧
N

e�J⌧N

!

= 2(2 cosh�J)N�1

which is the same as Eq. (3.5).

Correlation function

Another interesting quantity to compute is the correlation function h�n�n+ri.
It represents the degree of statistical correlation between two spins at di↵erent
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positions. It is defined as

h�n�n+ri =
1

Z

X

�1,...,�N

�n�n+r e�J(�1�2+...+�
N�1�N

)

To compute the correlation function it is easier to use the ⌧ ’s. Since �2

n = 1, we
may write

�n�n+r = (�n�n+1

)(�n+1

�n+2

) . . . (�n+r�1

�n+r)

= ⌧n+1

. . . ⌧n+r

The correlation function then becomes

h�n�n+ri =
1

2(2 cosh J)N�1

X

⌧1,...,⌧N

(⌧n+1

. . . ⌧n+r+1

)e�J(⌧2+...+⌧
N

)

The sum is now completely factored. The sum over ⌧
1

cancels the 2 downstairs
and the sums that do not have ⌧n multiplying the exponential will cancel the
cosh downstairs. What survives are r sums of the form

1

2 cosh�J

X

⌧

⌧ e�J⌧ =
1

2 cosh�J
(e�J � e��J) = tanh�J

Hence, we find

h�n�n+ri = tanhr(J/T ) (3.7)
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Figure 3.6: (a)The two-point correlation function versus the lattice spacing r, for
the 1D Ising model, Eq. (3.7) with J/T = 1. (b) The corresponding
correlation length, Eq. (3.8) as a function of T/J .

This result is presented in Fig. 3.6(a). As can be seen, the correlation be-
tween two sites decays quickly with the sites separation r. Usually, these corre-
lation functions can be written as

h�n�n+ri = e�r/⇠
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where ⇠ is called the correlation length. In our case we may write tanhr(J/T ) =
er ln tanh(J/T ). We then see that the correlation length is

⇠ = � 1

ln tanh(J/T )
(3.8)

When T ! 0, this correlation length diverges [see Fig. 3.6(b)]. This means that
two spins infinitely far apart will be perfectly correlated. This type of long-range
correlation is a signature of ferromagnetic order, which agrees with our previous
discussion that the system is ferromagnetic at T = 0.

Susceptibility

Lastly, we turn to the susceptibility:

� = �@2F

@h2

In a previous occasion, we showed that � was related to the fluctuations of the
magnetization,

� =
1

T


hM2i � hMi2

�

The second term is zero because, as we have already seen, there is no sponta-
neous magnetization. Moreover, expanding M =

P
n �n, we get

� =
1

T

X

n,m

h�n�mi

This formula shows the relationship between the correlation function and the
susceptibility. We can also manipulate it further, as follows:

� =
1

T

2

4
X

n

h�n�ni+
X

n,m 6=n

h�n�mi

3

5

=
1

T

"
X

n

(1) + 2
X

n,m>n

h�n�mi
#

=
1

T

"
N + 2N

NX

r=1

h�
1

�
1+ri

#

where, in the last line we used the fact that h�n�mi depends only on the distance
between n and m. We then get

� =
N

T

"
1 + 2

NX

r=1

tanhr �J

#
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We may compute this resulting sum if we assume that N ! 1. In this case
it resembles the geometric series, which converges because tanh J < 1. We just
need to be a bit careful because the geometric series starts at r = 0. So we write

� =
N

T

"
1� 2 + 2

1X

r=0

tanhr �J

#
=

1

T


�1 +

2

1� tanh�J

�

Simplifying we get

� =
N

T

✓
1 + tanh(J/T )

1� tanh(J/T )

◆
(3.9)

This result is shown in Fig. 3.7. As can be seen, it diverges as we approach
T ! 0.
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Figure 3.7: Susceptibility for the 1D Ising model, Eq. (3.9), as a function of T/J .

3.3 Non-zero field and the transfer matrix

Next we turn to the 1D Ising model when h 6= 0. In this case it is convenient
to use periodic boundary conditions so we will write the energy as

E = �J

NX

n=1

�n�n+1

� h

NX

n=1

�n (3.10)

and the partition function is

Z =
X

�1,...,�N

e��E =
X

�1,...,�N

exp

⇢
�J

NX

n=1

�n�n+1

+ �h

NX

n=1

�n

�
(3.11)

This sum may be computed using a technique known as the transfer matrix,
which can also be used in other models, in particular in the 2D Ising model.
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We begin by introducing the function

V (�
1

,�
2

) = exp

⇢
�J�

1

�
2

+
�h

2
(�

1

+ �
2

)

�
(3.12)

This is almost a typical term in Eq. (3.11), except that I slightly altered the
magnetic field term to make things look more symmetric. The partition func-
tion (3.11) may now be written as (please take your time to check that this is
indeed correct)

Z =
X

�1,...,�N

V (�
1

,�
2

)V (�
2

,�
3

) . . . V (�N�1

,�N )V (�N ,�
1

) (3.13)

The key to the transfer matrix technique is to recognize the similarity be-
tween this expression and the trace of a matrix.

Given some matrix A, its trace is the sum of the diagonal entries:

tr(A) =
X

i

Ai,i

The trace of A2, on the other hand, is

tr(A2) =
X

i

(A2)i,i =
X

i,j

Ai,jAj,i

And the trace of A3 is

tr(A3) =
X

i,j,k

Ai,jAj,kAk,i

Note how this is exactly what appears in Eq. (3.13), provided we interpret
V (�i,�j) as the matrix elements of a matrix V . This is acceptable since each
�i can take on only two values so that V will be 2⇥ 2.

The matrix elements of V can be computed directly from the definition in
Eq. (3.12):3

V =

 
V (1, 1) V (1,�1)

V (�1, 1) V (�1,�1)

!
=

 
e�(J+h) e��J

e��J e�(J�h)

!
(3.14)

The partition function in Eq. (3.13) may now be written as

Z = tr(V N ) (3.15)

This is the idea of the transfer matrix: the matrix V transfers the solution from
one site to the other and the partition function is simply the trace of a product
of V s.

We now use two general theorems of linear algebra:

3 The reason why we symmetrize Eq. (3.12) is precisely because it produces a symmetric
matrix V , which is much easier to work with.
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1. The trace of a matrix is the sum of its eigenvalues.

2. If �i are the eigenvalues of a matrix A, then the eigenvalues of AN are
�N
i .

Let us denote the eigenvalues of V by �
1

and �
2

. They may be easily computed
since V is 2⇥ 2. The characteristic equation is

det(V � �) = �2 � �(2e�J cosh�h) + (e2�J � e�2�J) = 0

which gives for the two eigenvalues

�± = e�J cosh(�h)±
q
e�2�J + e2�J sinh2(�h) (3.16)

Using our results from linear algebra now allow us to write the partition
function as

Z = �N
+

+ �N
� (3.17)

From Eq. (3.16) we see that �
+

> ��. We may therefore write

Z = �N
+

"
1 +

✓
��
�
+

◆N
#

If we are interested in the thermodynamic limit, N ! 1, the term inside
parenthesis will tend to zero since ��/�+

< 1. Hence, we conclude that

Z = �N
+

= �N
max

(3.18)

This is actually a general result, valid for any problem that can be solved using
transfer matrices: the partition function is the largest eigenvalue of the transfer
matrix, to the power N . For non-interacting problems we had Z = ZN

1

. Now
we don’t have that because the particles interact. Notwithstanding, we recover
something quite similar.

To finish the problem with style, let us write the result explicitly:

Z =


e�J cosh(�h) +

q
e�2�J + e2�J sinh2(�h)

�N
(3.19)

In the limit that h ! 0 this reduces to Eq. (3.5). The free energy is

F = �NT ln�
+

= �NT

(
e�J cosh(�h) +

q
e�2�J + e2�J sinh2(�h)

)
(3.20)

Whence, the magnetization per particle is

m =
M

N
= � 1

N

@F

@h
=

e�J sinh(�h)q
e�2�J + e2�J sinh2(�h)

(3.21)
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Figure 3.8: Magnetization of the 1D Ising model, Eq. (3.21), as a function of �h for
two di↵erent values of �J .

This result is plotted in Fig. 3.8 as a function of �h for two di↵erent values of
�J . The dashed line correspond to the limit �J ! 0, where we obtain

m = tanh(�h)

corresponding to independent spins [cf. Eq (2.49)]. As can be seen, the e↵ect of
changing J is to make the curve grow up faster. However, as h ! 0 we always
obtain a zero magnetization. This is the definitive proof that the system is not
ferromagnetic at any finite temperature.

Some properties of Pauli matrices

Computing the eigenvalues of V in Eq. (3.14) is an easy task since the
matrix is 2 ⇥ 2. However, to compute correlation functions we also need the
eigenvectors, which are usually more cumbersome to deal with, even for 2 ⇥ 2
matrices. Whenever you are faced with a problem like this, I always recommend
you use Pauli matrices. The idea is to use the fact that the most general 2⇥ 2
matrix may be written as

A = a
0

+ a · � (3.22)

for four numbers a
0

, ax, ay and az. Here a · � is an abbreviation for ax�x +
ay�y + az�z. We may also let a = |a| and introduce the unit vector n = a/a.
Then

A = a
0

+ a(n · �) (3.23)

The idea of using Pauli matrices is to exploit the following properties:

1. The eigenvectors of A are the same as those of n · �.

2. If � is an eigenvalue of n · �, then a
0

+ a� is an eigenvalue of A.
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Let us look more closely at the matrix

n · � = nx�x + ny�y + nz�z =

✓
nz nx � iny

nx + iny �nz

◆

It is straightforward to verify that the eigenvalues of this matrix are ±1. Hence,
the eigenvalues of A in Eq. (3.23) are

a
0

± a (3.24)

As for the eigenvectors, it is convenient to parametrize n in spherical coordi-
nates,

nx = sin ✓ cos�

ny = sin ✓ sin�

nz = cos ✓

Then the eigenvectors may be written as

|v
+

i =
 

cos ✓/2

ei� sin ✓/2

!
|v�i =

 �e�i� sin ✓/2

cos ✓/2

!
(3.25)

This procedure gives a systematic way to find eigenvalues and eigenvectors of
2 ⇥ 2 matrices. And the resulting formulas are much more convenient to work
with. Every time I have to deal with 2⇥2 matrices, I always use this procedure.

Back to the transfer matrix

Now let us go back to the transfer matrix in Eq. (3.14). It can be written as

V = e�J cosh(�h) + e��J�x + e�J sinh(�h)�z

= e�J cosh(�h) +
q

e�2�J + e2�J sinh2(�h)

⇢
sin ✓�x + cos ✓�z

�
(3.26)

where

tan ✓ =
e�2�J

sinh(�h)
(3.27)

This is precisely in the form of Eq. (3.22). The eigenvalues of V are therefore
a
0

± a, or

�± = e�J cosh(�h)±
q
e�2�J + e2�J sinh2(�h)

which is the same as Eq. (3.16). Moreover, the eigenvectors are

|v
+

i =
✓
cos ✓/2
sin ✓/2

◆
|v�i =

✓
� sin ✓/2
cos ✓/2

◆
, tan ✓ =

e�2�J

sinh(�h)
(3.28)

We shall use these formulas below to exploit more sophisticated properties of
the transfer matrix.

78



Magnetization

Let us look at

h�
1

i = 1

Z

X

�1,...,�N

�
1

V (�
1

,�
2

)V (�
2

,�
3

) . . . V (�N ,�
1

)

The quantity �
1

V (�
1

,�
2

) may be interpreted as another matrix, V 0. It has
values [cf. Eq. (3.14)]

V 0 =

✓
e�(J+h) e��J

�e��J �e�(J�h)

◆

So we may also write

h�
1

i = 1

Z
tr(V 0V N�1)

But you may verify that
V 0 = �zV

Hence, we have

h�
1

i = 1

Z
tr(�zV

N )

This logic also extends to the magnetization at any other site. In general,

h�ni =
1

Z
tr(V n�1�zV

N�n+1) (3.29)

But using the cyclic property of the trace we find that

h�ni =
1

Z
tr(�zV

N ) (3.30)

The cyclic property of the trace thence reflects the translational invariance
of the model. We may compute this trace in the |v±i basis which diagonalizes
V . We then get

h�ni =
1

Z

(
hv

+

|�z|v+i�N
+

+ hv�|�z|v�i�N
�

)

In the thermodynamic limit, however, Z = �N
+

so the term containing �� van-
ishes. We are then left with

h�ni = hv
+

|�z|v+i (3.31)

This result has a very important physical interpretation. As can be seen, we
have reduced the problem to a quantum mechanical expectation value. We
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can envisage |v
+

i as being the ground-state of a 2-level system. In this sense
the transfer matrix has reduced a 1D thermal average into a zero-dimensional
(ie, a single particle) ground-state average.

A similar thing will happen in the 2D Ising model. There the transfer matrix
will transfer one row to another and is therefore N ⇥N , not 2⇥2. We will then
show how to use the transfer matrix to transform the 2D Ising model into a 1D
quantum mechanical model at zero temperature, which will turn out to be the
Ising model in a transverse field. In the literature, this type of transformation
goes by the name of Hamiltonian limit.

For sanity purposes, let us compute Eq. (3.31) and see if it matches Eq. (3.21).
Using Eq. (3.28) we find

h�ni = cos2(✓/2)� sin2(✓/2) = cos ✓ =
e�J sinh(�h)q

e�2�J + e2�J sinh2(�h)

which is indeed Eq. (3.21), so everything works. This result also gives a physical
interpretation to the angle ✓.

Correlation function

Finally, let us study correlation functions h�n�n+ri. Using the same argu-
ment that led us to Eq. (3.29), we may write

h�n�n+ri =
1

Z
tr(V n�1�zV

r�zV
N�n�r+1) =

1

Z
tr(�zV

r�zV
N�r)

We now compute this trace in the |v±i basis, already assuming that Z = �N
+

:

h�n�n+ri =
1

�N
+

(
hv

+

|�zV
r�z|v+i�N�r

+

+ hv�|�zV
r�z|v�i�N�r

�

)

Again, the second term vanishes and we are left with

h�n�n+ri =
hv

+

|�zV
r�z|+i

�r
+

(3.32)

To make things more symmetric, you can also write this as

h�n�n+ri =
hv

+

|�zV
r�z|+i

hv
+

|V r|+i

Carrying out the computation finally gives

h�n�n+ri = cos2 ✓ +

✓
��
�
+

◆r

sin2 ✓ (3.33)
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Figure 3.9: A single magnetic domain in the 1D Ising model.

The correlation between two spins very far apart therefore tends to cos2 ✓. It is
convenient to subtract this part and define the connected correlation

G(r) = h�n�n+ri � h�z
nih�z

n+ri =
✓
��
�
+

◆r

sin2 ✓ (3.34)

I wrote G(r) and not G(n, n+r) to emphasize that, due to translation symmetry,
this result depends only on the distance between the spins. When h ! 0 this
result reduces to Eq. (3.7).

3.4 The Pierls arguments

Ising solved the 1D Ising model (around 1925) in a way similar to how we
did it and found no phase transition, except at T = 0. He then concluded that
the Ising model in any dimension would not have a phase transition. But that
conclusion is wrong: dimensionality matters; it matters a lot.

The best way to understand why dimensionality is so important is through
an argument put forth by R. Peierls in 1936 on a paper entitled On the Model of
Ising for Ferromagnetism. Consider a one-dimensional Ising chain. We already
know that the ground-state is the fully magnetized state, with all spins up (or
down). Now we want to test how robust this state is, in comparison with other
states. To do that, suppose we produce a single magnetic domain of size L in
the middle of the chain, as illustrated in Fig. 3.9. Recall that the Ising energies
are

E = �J
X

n

�n�n+1

Every time we flip a spin, we increase the energy by 2J . For the domain config-
uration in Fig. 3.9 there are two flips, so the energy will be E = E

0

+4J , where
E

0

is the ground state energy.
Recall, however that at finite temperatures we should look not for the state

of smallest energy, but for the state of smallest free energy F = U � TS. The
entropy of a given microscopic configuration is S = ln⌦, where ⌦ is the number
of ways to produce an equivalent configuration. Since the domain length is L,
we see that there are roughly L di↵erent ways of making a domain of length L.
Thus, S ⇠ lnL, which will give a free energy

F = U � TS = (E
0

+ 4J)� T lnL
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Now coms Peierls’ argument: the first term is independent of size, so for any
T 6= 0, it is always possible to find a domain size L for which the second term
will dominate. That is, we can always find a size for which the free energy
of having a domain is smaller than the free energy of not having a domain.
Consequently, there can be no magnetic order.

The situation is dramatically di↵erent in 2D. Consider a single domain in
the 2D Ising model, as in 3.10, and assume that the perimeter of the domain is
L. This means that there are L up-down bonds and therefore the energy of this
domain will be E = E

0

+ 2JL. Unlike the 1D case, this energy now depends
on L. The number of microscopic configurations giving a domain of perimeter
L now also increase dramatically. In fact, it can be shown that this number is
of the order ⌦ ⇠ cL where c is a number between 2 and 3. Therefore, the free
energy will now be

F = U � TS ' E
0

+ 2JL� TL ln c

If

T >
2J

ln c

it is more advantageous (from a free energy point of view) to have the system
dividing up into an infinite number of domains, which would destroy the ferro-
magnetic order. However, if T is smaller than this quantity the fully magnetized
state is the state which continues to give the smallest energy. Consequently, at
very low temperatures there should be an ordered ferromagnetic phase.

Figure 3.10: A single magnetic domain in the 2D Ising model with perimeter L

Peierl’s argument therefore shows that dimensionality matters. Every sta-
tistical model has something called a lower critical dimension, which is the
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Figure 3.11: The Ising model in 2D The blue lines denote the terms to include in
the sum when writing the energy explicitly.

smallest dimension at which there is no phase transition. For the Ising model
the lower critical dimension is 1.

3.5 The mean-field approximation

The mean-field approximation is the most widely used approximation to deal
with interacting models. We will discuss this approximation now in the context
of the Ising model, but it is also applicable to an enormous class of problems.
For instance, it is the basis of the Hartree-Fock approximation in electronic
structure calculations and also of the BCS theory of superconductivity.

Consider the Ising model in a d-dimensional hypercubic lattice with only
nearest-neighbor interactions. The energy is taken to be

E = �J
X

hi,ji

�i�j � h
X

i

�i (3.35)

Here the notation hi, ji means a sum over nearest neighbors. For instance, if
we are in a 2D lattice (fig. 3.11) there will be N sites, each having 2 bonds. In
general, the number of bonds is Nd, assuming periodic boundary conditions.
Our goal, as usual, is to compute the partition function

Z =
X

{�}

e��E (3.36)

where {�} is a short-hand notation to mean the sum over all spin configurations.
The basic idea of the mean-field approximation is to separate the mean value

h�ii from its fluctuations
��i = �i � h�ii (3.37)
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Our model has translation invariance so we expect that all h�ii will have the
same value:

h�ii := m (same for all sites i) (3.38)

The idea is not to substitute �i = m+ ��i into the first term of Eq. (3.35). We
then get

�i�j = (m = ��i)(m+ ��j)

= m2 +m(��i + ��j) + ��i��j

So far this is all exact. Now comes the actual mean-field approximation:
we neglect the term ��i��j . Reason: ��i represent fluctuations and we
assume (hope) that fluctuations will be small. So ��i��j is quadratic in the
fluctuations and hence negligible. We will therefore approximate

�i�j ' m2 +m(��i + ��j)

= m2 +m[(�i �m) + (�j �m)]

= �m2 +m(�i + �j)

The energy (3.35) then becomes

E ' J
X

hi,ji

m2 � Jm
X

hi,ji

(�i + �j)� h
X

i

�i

Now: the sum over hi, ji contains Nd terms so the first term becomes JNdm2.
Moreover, X

hi,ji

�i = d
X

i

�i

and X

hi,ji

�j = d
X

j

�j = d
X

i

�i

Hence, the energy finally becomes

E = JNdm2 � (h+ 2Jdm)
X

i

�i (3.39)

This energy now depends on m = h�ii, which is a little bit weird. But we will
learn how to deal with it in a second.

The important aspect of this result is that the energy is now linear in the
�i. It is essentially the energy of N independent spins in an “e↵ective magnetic
field” h̃ = h+ 2Jmd. Therefore the partition function will be simply

Z = e��Jm2Nd

⇢
2 cosh[�(h+ 2Jmd)]

�N

(3.40)
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We know that for independent spins h�ii = tanh(�h). In our case the result
must be the same, with h replaced by h̃. But we also have that h�ii = m so we
conclude that

m = tanh(�h+ �2Jmd) (3.41)

This is called the Curie-Weiss equation. It is a self-consistent equation that
needs to be solved for m.

Curie and Weiss actually arrived at this result following a di↵erent logic.
For isolated spins m = tanh(�h). They then argued that in a ferromagnetic
material the spins also feel an e↵ective field due tot he presence of all other
spins around it. This field should itself depend on the magnetization so they
proposed to replace

h ! h+ �m

where � was a constant which they called the molecular field constant. The
word “molecular” here is to be interpreted as “microscopic” because this is the
microscopic field created by all other particles. Comparing with Eq. (3.41) we
then see that � = 2Jd. The idea of having a molecular field is actually wrong:
the field would have to be unrealistically large. Instead, around 30 years after
Curie and Weiss’ original model, Heisenberg showed that this type of interaction
is actually electrostatic (it is the exchange interaction). Notwithstanding, I
think that the idea of Curie and Weiss is very interesting and important to
understand: it represents a feedback mechanism where the surroundings of a
spin influence each other.

Analysis for h = 0

When h = 0 Eq. (3.41) becomes

m = tanh(�2Jmd) (3.42)

This equation can be solved graphically. We have two functions,m and tanh(�2Jmd)
and we must find the point where they coincide. The idea is illustrated in
Fig. 3.12 for three possible values of 2�Jd.

-� -� � � �
-���
-���
-���
-���
���
���
���
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���
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���
���
���
���
���

�

(�) �β�� = �
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-���
-���
-���
-���
���
���
���
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���

�

(�) �β�� > �

Figure 3.12: Graphical solution of Eq. (3.42) for three di↵erent values of 2�Jd.
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The key aspect that you need to have in mind here is the slope of tanh(2�Jdm)
close to m = 0. When m is small we may expand

tanh(x) ' x� x3

3
(3.43)

Eq. (3.42) then becomes, approximately,

m ' 2�Jdm� (2�Jd)3
m3

3
(3.44)

One solution is always m = 0. However, we see that we may also have additional
solutions. In particular, if we write this as

(2�Jd)3

3
m2 = 2�Jd� 1 (3.45)

we see that there will be other real solutions provided 2�Jd � 1. This defines
the critical temperature

Tc = 2Jd (3.46)

The critical temperature increases with J , which makes sense since a stronger
spin-spin interaction should lead to a higher resistance to thermal fluctuations.
Moreover, it increases with d since, in higher dimensions, the number of bonds
is higher.

Graphically, you should try to understand the critical temperature as being
the temperature where the slope of tanh(2�Jdm) at m = 0 becomes identically
1, as in Fig. 3.12(b). Above Tc the slope will be smaller than one and there will
only be a trivial solution m = 0 [Fig. 3.12(c)] and below Tc the slope will be
greater than 1 and two new solutions will appear [Fig. 3.12(a)].

Our solution is summarized in Fig. 3.13. For T > Tc we have only one
possibility, which is m = 0. But below Tc there are three possible solutions.
Later we will show that the solution with m = 0 becomes unstable below Tc (we
don’t have the tools to talk about stability just yet). Moreover, the two solutions
with m 6= 0 have equal magnitude and just di↵er in sign. This is the up-down
symmetry of magnetic materials. In any case, what is experimentally observed
in the end is |m|, so instead of Fig. 3.13 we observe in practice Fig.. 3.1(a).

Returning to Eq. (3.45) we may write it as

(Tc/T )3

3
m2 =

Tc

T
� 1

so that the magnetization, close to the critical point, becomes

m2 =
3T 2

T 3

c

(Tc � T ) (3.47)

This is valid for T < Tc. Above the critical temperature m = 0.
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Figure 3.13: All possible solutions of Eq. (??).

The two-point correlation function is

h�n�n+ri = h(m+ ��n)(m+ ��n+r)i (3.48)

But, by definition, h��ni = 0. Moreover, since we are discarding quadratic
terms in the fluctuations, we are left only with

h�n�n+ri = m2 (3.49)

The correlation function is independent of distance and is always the magneti-
zation squared.

Analysis for h 6= 0

Now let us return to Eq. (3.41). Inverting Eq. (??) and writing 2�J = Tc

we obtain
h = �Tcm+ T tanh�1(m) (3.50)

This is the equation of state for the system, just like for the ideal gas, where
we have pV = NT . Here h plays the role of �p; ie, it is something which
externally alters the state of the system, whereas m plays the role of V/N . A
typical m vs. T curve for h 6= 0 is shown in Fig. 3.14. Close to the critical point
we may expand tanh�1(m) ' m+m3/3 and therefore write

h ' (T � Tc)m+
Tm3

3
(3.51)

Exactly at T = Tc we see that

m =

✓
3h

Tc

◆
1/3

(3.52)
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Figure 3.14: m vs. T for h = 0 (dashed line) and h 6= 0 (solid line).

Next we turn to the susceptibility:

� =
@m

@h

�����
h=0

(3.53)

We may obtain a formula for � close to the critical point by di↵erentiating both
sides of Eq. (3.51). This gives

1 = �(Tc � T )
@m

@h
+ Tm2

@m

@h

or,

�(T ) =
1

(T � Tc) + Tm2

(3.54)

This formula is illustrated in Fig. 3.15. As can be seen, the susceptibility di-
verges around the critical point. Above the critical point m = 0 and Eq. (3.54)
simplifies to

� =
1

T � Tc
(3.55)

which is known as the Curie-Weiss law. Recall that for paramagnets we used to
have � = C/T . In the present case, even though at T > Tc the material behaves
like a paramagnet, we still see some reflections of the interactions, which modify
Curie’s law to C/(T � ✓). In our present model ✓ = Tc. In real materials we
find that both are usually di↵erent. For T < Tc we substitute Eq. (3.47) to find

� =
1

2(Tc � T )
(3.56)

It also diverges with the same exponent and a slightly di↵erent pre-factor.
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Figure 3.15: � vs. T , computed from Eq. (3.54).
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Figure 3.16: The specific heat for the mean-field model, computed using Eq. (??)
together with the numerical solution of Eq. (??).

Internal energy and specific heat

The energy of the system, in the mean-field approximation, is given by
Eq. (3.39). Thus, the internal energy will be

U = hEi = Jm2Nd� (h+ 2Jmd)(Nm)

or,
U = �Nhm�NJdm2 (3.57)

The heat capacity at h = 0 will then be

C =
@U

@T
= �NJd

@

@T
m2 (3.58)

Above the critical temperature m = 0 so the specific heat will be zero. Below
the critical temperature it increases with T since m decreases monotonically.
This result is shown in Fig. 3.16
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Critical exponents and universality

Now let me introduce to you some of the jargons of critical phenomena. The
magnetization is an order parameter. This is the name given to any quantity
which is zero in one phase but non-zero in the other. The order parameter
therefore characterizes which phase you are in. The important part of critical
systems is how the order parameter tends to zero as we approach the critical
point. By “how”, I mean that we don’t care about pre-factors or silly numerical
values. All we care about is the functional form of this decay. In the literature
you will often find this written as

m ⇠ (Tc � T )� (3.59)

The important part is the exponent � (which is not 1/T , sorry!). It is called
a critical exponent. Other thermodynamic quantities also have their own
critical exponents. For instance, the susceptibility diverges at the critical point
from either side as

� ⇠ 1

|T � Tc|�
(3.60)

and similarly for the specific heat:

c ⇠ 1

|T � Tc|↵
(3.61)

Exactly at T = Tc, the magnetization usually becomes algebraic in the magnetic
field, changing as

m ⇠ |h|1/� (3.62)

Finally, the correlation length ⇠ diverges as

⇠ ⇠ 1

|T � Tc|⌫
(3.63)

The use of the letters �, ↵, �, � and ⌫ is usually standard in the literature.
Now comes the surprising part: the set of critical exponents depends only

on the symmetries of your model and the dimensionality. This is called Uni-
versality. The pre-factors and the value of Tc are completely di↵erent, but the
exponents are the same. For instance, the Ising model in a 2D square lattice
and in a 2D triangular lattice will have the same critical exponents because both
have the same symmetries (up-down in this case) and dimensionality.

This introduces the idea of Universality classes. We say, for instance,
that the mean-field approximation defines the mean-field universality class. Any
mean-field approximation that you do in your life, irrespective of what kind of
physical system you are considering, always has the same set of critical expo-
nents as the mean-field model. It doesn’t even have to be a model in magnetism.
For the mean-field the exponents can be read o↵ from Eqs. (3.47), (3.49), (3.52),
(3.56) and (3.58). They are summarized in Table (3.2) together with the expo-
nents for the 2D and 3D Ising models. The former was computed exactly and
the latter by Monte Carlo simulations. This is why the 2D exponents are given
as rational numbers and the 3D are not.
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Table 3.2: Critical exponents, Eqs. (3.59)-(3.63). Copied without permission from
Nishimori and Ortiz, Elements of Phase Transitions and Critical Phenom-

ena.

Exponent Mean-field Ising 2D Ising 3D
↵ 0 0 0.110
� 1/2 1/8 0.3265
� 1 7/4 1.2372
� 3 15 4.789
⌫ 1/2 1 0.63

3.6 The Landau free energy and hysteresis

The partition function in the mean-field approximation is given in Eq. (3.40).
The free energy will then be F = �T lnZ or

F =
NTc

2
m2 �NT ln 2�NT ln


cosh

✓
h+mTc

T

◆�
(3.64)

where I already used the fact that 2Jd = Tc. The free energy per spin will be

f =
F

N
=

Tc

2
m2 � T ln 2� T ln


cosh

✓
h+mTc

T

◆�
(3.65)

The free energy is now a function of m. This only happens when we are in
the mean-field approximation (usually, F is only a function of h and T ). We
already know that thermodynamic equilibrium corresponds to the state which
minimizes the free energy. Hence, in thermal equilibrium the value of m and f
will be determined from

@f

@m
= 0 (3.66)

Taking the derivative of Eq. (3.65) we then find

@f

@m
= Tcm� Tc tanh

✓
h+mTc

T

◆
= 0 (3.67)

which is precisely Eq. (3.41). This shows that the solutions plotted in Fig. 3.13
are nothing but the extrema of the free energy.

Now let us assume that we are close to the critical point so that m is small.
Moreover, we will also assume that h is small. This allows us to expand the last
term as

ln[cosh(x)] ' x2

2
� x4

12
(3.68)

When we do that we will get a power series expansion in both m and h. For
the terms which contain m alone, we will keep the expansion up to order m4

(for reasons that will become clear in a second). But for terms which contain
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h, we will only retain the term which is linear in h. If you have a little patience
to work out the expansion, you will find that this leaves us with

f ' �T ln 2� Tc

T
mh+

Tc

2T
(T � Tc)m

2 +
T 4

c

12T 3

m4

Since we are talking about an expansion close to criticality, we may also ap-
proximate Tc/T ' 1. Finally, we get rid of the first term, �T ln 2, since it is
independent of m. We then finally arrive at

f ' �mh+
(T � Tc)

2
m2 +

Tc

12
m4 (3.69)

This is called the Landau free energy. When h = 0 the free energy will pre-
serve up-down symmetry since it only contains even terms in the magnetization.
The magnetic field term is odd in m and therefore breaks this symmetry, as we
would expect.

Eq. (3.69) allows for a very interesting interpretation of ferromagnetism, due
to Landau. It is based on the sign of the quadratic term. In Fig. 3.17 we plot f
as a function of m for T > Tc (paramagnetic phase) and T < Tc (ferromagnetic
phase), for the case h = 0. In the paramagnetic phase T � Tc > 0 so the only
minimum of the Landau free energy is at m = 0. But in the ferromagnetic
phase this coe�cient becomes negative, causing the appearance of two minima
at non-zero values ofm. These new minima represent the spontaneous ferromag-
netic phases. They are precisely the solutions in Fig. 3.13. When we discussed
Fig. 3.13 I said that the solution with m = 0 was unstable in the ferromagnetic
phase. Now you can see why: it corresponds to a maximum, not a minimum,
of the free energy.
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Figure 3.17: The Landau free energy f , Eq. (3.69) as a function of m for (a) T > Tc

(paramagnetic phase) and (b) T < Tc (ferromagnetic phase).

Landau arrived at Eq. (3.69) using only symmetry arguments. His basic idea
is:
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Figure 3.18: The Landau free energy (3.69) for non-zero magnetic fields in the
ferromagnetic phase (T < Tc).

1. The free energy should be an analytic function of the order parameter and
may therefore be expanded in a power series close to the critical point.

2. The free energy must have the same symmetries of the original Hamilto-
nian.

In our case the system must be invariant under m ! �m. Thus, an expansion
of f(m) for h = 0 may only contain even terms of m. Something like:

f = a
0

+ a
2

m2 + a
4

m4 + a
6

m6 + . . . (3.70)

The coe�cients ai will be functions of T . In order for us to have a phase
transition at T = Tc, the coe�cient a

2

must change sign. Hence, it must be
proportional to T � Tc. The coe�cient a

4

, on the other hand, must always
remain positive to ensure the stability of the free energy. This type of reasoning
can be applied to all phase transitions. It is called the Landau theory of
phase transitions. All we need to do is identity the order parameter and
then expand the free energy while preserving the symmetries of the original
Hamiltonian.

Now I want to discuss a very interesting concept called spontaneous sym-
metry breaking. Look again at Fig. 3.17. There seems to be a contradiction
between this figure and experiment. The free energy has up-down symmetry (it
is invariant under exchange of m ! �m). However, in practice we either find
the system magnetized one way or another. Thus, even though the states with
m > 0 and m < 0 should be equally likely, the system “chooses” one of these
two states to stay on. The up-down symmetry has been spontaneously broken.

To understand why this happens, consider the e↵ect of adding a non-zero
field (Fig. 3.18). The field breaks up-down symmetry, making one of the minima
deeper than the other. Now imagine that we start with a big and positive field,
pushing the magnetization to the positive side. Then we start to slowly reduce
the field until we reach h = 0. We will then have restored up-down symmetry
but the magnetization will continue to be on the positive side. Thus, by applying
a field, we have forced the system to choose one of two solutions.

Let ±m⇤ denote the two minima of f [ie, the two solutions we found in
Eq. (3.47)]. If the system is in +m⇤, there is a certain probability that jumps
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Figure 3.19: The Landau free energy f , Eq. (3.69) as a function of m for T = 0.9Tc

and several values of h (in units of Tc).

toward the �m⇤ state. But to do that, it must overcome an energy barrier. The
energy barrier is the di↵erence �F = F (+m⇤) � F (0) [cf. Fig. 3.17)]. Using
Eq. (3.47) we find

�F =
9N(T � Tc)2

4Tc
(3.71)

If T = Tc the energy barrier is zero. But for any T < Tc, the energy barrier
will be proportional to the number of particles N . Hence, even though the
probability exists, in the thermodynamic limit it will become vanishingly small:
the barrier becomes insurmountable. In other words, the time the system will
take to jump from +m⇤ to �m⇤ becomes infinite. Thus, in practice, we have
gone from a situation where the two states are equally likely, to a situation
where the system only chooses one of the two states: the up-down symmetry
has been spontaneously broken.

Hysteresis

Suppose that the system is in the +m⇤ state and we start to apply a small
negative field. This will not instantaneously push the magnetization to �m⇤

since there will still be an energy barrier to surmount. In 1948, Stoner and
Wolfarth proposed that the jump should occur only when the energy barrier
separating the two minima becomes a saddle point.4; i.e., when the shallowest of
the two minima disappear. This is illustrated in Fig. 3.19. The magnetization is
initially on the right well, and it will stay there until the field is strong enough
to completely destroy this minimum. Then it will have no energy barrier to
surmount and will simply slide down to the now unique global minimum. Notice
how this introduces a memory e↵ect. The state of m is no longer uniquely
determined by h. But rather, it depends on the previous history of the sample.

This is the idea behind hysteresis. If we continue to follow this procedure
we will obtain a hysteresis loop, like the one shown in Fig. 3.20. I computed
this loop using only Eq. (3.69), by forcing the magnetization to switch from one
minima to another only when there was no barrier between them. The field
where the switch occurs is the coercive field hc.

4See E. C. Stoner and E. P. Wolfarth, Phil. Trans. Roy. Soc. A240 (1948) 599
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Figure 3.20: A hysteresis loop computed using the Stoner and Wolfarth model, for
Tc = 0.9.

Relaxation to equilibrium

If we put the magnetization of the system in a non-equilibrium state, it will
slowly relax toward the thermal equilibrium solutions ±m⇤. We may obtain
a rough description of how this relaxation takes place using the Landau free
energy. The condition for equilibrium is that @f/@m = 0. Therefore, close to
equilibrium we may assume that the dynamics of m(t) may be described by

⌧
dm

dt
= � @f

@m
(3.72)

where ⌧ is a constant measuring the time scale of the process (this is usually
di�cult to calculate analytically, but it can always be measured experimentally).
This equation describes a sort of viscous relaxation toward equilibrium. It is
certainly phenomenological, but it does give fairly good results.

Let us take h = 0. Close to the critical value, we may use Eq. (3.67) to write

⌧
dm

dt
= �(T � Tc)m� Tcm

3

3

Multiplying on both sides by m and writing m dm
dt = 1

2

dm2

dt we get

⌧

2

dm2

dt
= �(T � Tc)m

2 � Tcm
4

3

The solution of this equation is

m(t)2 =
T � Tc

↵e2(T�T
c

)t/⌧ � Tc/3
(3.73)
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where ↵ is a constant determined from the initial conditions. If T > Tc the
exponential is positive and we find that m relaxes exponentially to zero as
m(t) ⇠ e�(T�T

c

)t/⌧ , in agreement with what we expect from a paramagnetic
phase. Conversely, if T < Tc we see that m(t) tends to its equilibrium value in
Eq. (3.47).

Special care must be taken to the solution exactly at the critical point. We
then have instead

⌧
dm

dt
= �Tcm

3

3

The general solution of this equation is

m(t) =
1

2T
c

3

t
⌧ + �

where � is another constant. Hence, at the critical point the magnetization also
relaxes to zero, but it does so algebraically. This is very common of critical
phenomena: outside criticality the relaxation is exponential, but at the critical
point it becomes algebraic.
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