
Quantum Information - Problem set 2
Professor: Gabriel T. Landi

Deadline: 10/06 (monday)

1. Entanglement in a GHZ states

Consider 4 qubits prepared in the GHZ state

|ψ〉 =
|0000〉 + |1111〉

√
2

. (1)

The goal of this exercise is to characterize entanglement from the perspective of different
bipartitions. For this you will use the idea of Schmidt decomposition introduced in Sec.
4.1 of the lecture notes. The starting point is always a decomposition of the form

|ψ〉 =
∑

i j

ψi j |i〉A ⊗ | j〉B, (2)

and the realization that ψi j may be viewed as a matrix, to which one can apply a Singular
Value Decomposition. The difference in the case of the state (1), compared to what we
studied in class, is that we have four and not two qubits. We can still apply the same ideas,
but now a 4-qubit systems can be partitioned in more than two ways.

(a) Consider first the bipartition A = {1, 2} and B = {3, 4}. That is, define a basis
|i〉A = |00〉, |01〉, |10〉, |11〉, and analogously for B. Find the matrix ψi j and perform
the Schmidt decomposition to find the Schmidt form of the state.

(b) Next repeat the procedure for a bipartition A = {1, 2, 3} and B = {4}.

(c) Compute the reduced density matrices of 1, 2 and 3 qubits. The GHZ state is quite
dramatic because as soon as you trace over a single qubit, the resulting state is almost
the maximally mixed state, with zero quantum correlations of any kind.

(d) Compute the mutual information I(1 : 23) and I(1 : 2). Recall that

I(A : B) = S (ρA) + S (ρB) − S (ρAB).

Thus I(1 : 23) = S (ρ1) + S (ρ23) − S (ρ123) and I(1 : 2) = S (ρ1) + S (ρ2) − S (ρ12).

2. Entanglement in W states

Consider now the W-state

|ψ〉W =
|0001〉 + |0010〉 + |0100〉 + |1000〉

2
. (3)

This state is fundamentally different from the GHZ. In fact, it can be shown that it is impos-
sible to go from one to the other using only local operations. Repeat the same calculations
of the previous exercise for the W state.

3. Qubit quantum channels

Qubits can be conveniently described in terms of the position in Bloch’s sphere,

r = (rx, ry, rz), ri = tr(σiρ). (4)



The goal of this exercise is to explore the effects of different single-qubit channels on a
typical Bloch sphere vector r. To accomplish that, discuss how r changes upon application
of the following channels:

(a) Bit-flip channel:
M0 =

√
p I, M1 =

√
1 − pσx. (5)

(b) Phase-flip channel:
M0 =

√
p I, M1 =

√
1 − pσz. (6)

(c) Depolarizing channel:

M0 =
√

1 − 3p/4 I, M1 =

√
p
4
σx, M2 =

√
p
4
σy, M3 =

√
p
4
σz. (7)

In this case, verify also that the channel may be written as

E(ρ) =
p
2

I + (1 − p)ρ. (8)

The depolarizing channel is therefore very special as it simply mixes ρ with the maxi-
mally mixed state I/2.

4. Lindblad equation for the finite temperature amplitude damping

Consider the Lindblad master equation

dρ
dt

= γ(1 − f )
[
σ−ρσ+ −

1
2
{σ+σ−, ρ}

]
+ γ f

[
σ+ρσ− −

1
2
{σ−σ+, ρ}

]
. (9)

(a) Check that this equation preserves the trace of any density matrix.

(b) Parametrize ρ in any convenient way you wish and find the solution of Eq. (9) for an
arbitrary initial state.

(c) Consider now the so-called Finite Temperature Amplitude Damping (FTAD) channel,
described by the Kraus operators,

M0 =
√

F
(
1 0
0
√

1 − λ

)
, M1 =

√
F

(
0
√
λ

0 0

)
, (10)

M2 =
√

1 − F
(√

1 − λ 0
0 1

)
, M3 =

√
1 − F

(
0 0
√
λ 0

)
, (11)

Show that the solution of Eq. (9) has the form of a FTAD channel and find the connec-
tion between the parameters (γ, f ) and (λ, F).


