
Quantum Information and Quantum Noise - Problem set 2
Professor: Gabriel T. Landi

Deadline:

1. Master equation for a qubit. Use the Nakajima-Zwanzig method to derive the master
equation for a qubit coupled to an infinite number of bosonic modes through the Hamilto-
nian

H =
ω

2
σz +

∑
k

Ωkb†kbk +
∑

k

λk(σ+bk + σ−b†k). (1)

This derivation is quite analogous to the one we did in class for the harmonic oscillator. I
recommend you try to follow those steps.

2. Generation of two-mode squeezing. Consider two bosonic modes a and b. We define the
two-mode squeezing operator as

S z = exp
{
z∗a†b† − zab

}
, z = reiθ (2)

This is analogous in spirit to the single-mode squeezing, except that now it mixes a and b:

S †z aS = a cosh(r) + b†eiθ sinh(r) (3)

S †z bS = b cosh(r) + a†eiθ sinh(r) (4)

(a) Find the covariance matrix Θ of the two-mode squeezed vacuum

ρ = S z|0〉〈0|S †z . (5)

Show from the CM that the reduced states of modes a and b are actually thermal
states and relate the Bose-Einstein thermal occupation with the parameter z. Thus,
we can think about a thermal state of a single mode as actually being a pure state
of a larger system. This is the idea behind a theory called thermal quantum field
theory developed to deal with quantum many-body systems at finite temperatures.
However, this idea didn’t really catch and another approach, due to Matsubara, became
the dominant one. So people eventually forgot about it. But there is still a Wikipedia
page!

(b) Compute the Rényi-2 entanglement entropy of the two-mode squeezed vacuum as a
function of z (Note: when I say “entanglement entropy” I already mean the entropy of
the reduced states; of course, the entropy of ρ itself will be zero since it is a pure state).

3. Generating two-mode squeezing using an open quantum system. Let us now consider
how two-mode squeezing may be generated. We consider a cavity populated with the
two-modes a and b, which are subject to the Hamiltonian

H = ω(a†a + b†b) + iλ(a†b† − ab),

(the factor of i is placed only for convenience). We also assume that the two modes are
subject to a cavity loss dissipator, so that the total density matrix will evolve according to
the master equation

dρ
dt

= −i[H, ρ] + 2κD[a] + 2κD[b],

where D[L] = LρL† − 1
2 {L
†L, ρ}.



(a) Construct the Lyapunov equation for this problem and find the steady-state (possibly
using the LyapunovSolve[] function in Mathematica).

(b) Discuss your result. Is the steady-state pure? What happens when λ→ 0? What about
γ → 0?

(c) Compute the Rényi-2 mutual information and make some pretty plots.

(d) Study the Duan inequality for your steady-state.

4. Purity of a Gaussian state. Consider a single bosonic mode with annihilation operator a.
The most general Gaussian state is a displaced squeezed thermal state

ρ = D(α)S zρthS †z D†(α), S z = exp
{1

2
(za†a† − z∗aa)

}
,

where D(α) = eαa†−α∗a is the displacement operator, S z = exp
{

1
2 (za†a† − z∗aa)

}
is the

squeezing operator and ρth is the thermal density matrix ρth = (1 − e−βω)e−βωa†a.

Show that the purity of this state is

tr(ρ2) =
1

2n̄ + 1

where n̄ = (eβω − 1)−1. Tip: exploit the fact that D(α) and S z are unitary to get rid of them.
Relate this result with the formula discussed in the lecture notes,

tr(ρ2) =
1

2
√
|Θ|
,

where Θ is the covariance matrix.

5. Optical Kerr bistability. Consider the model described by the Hamiltonian

H = ωca†a +
U
2

a†a†aa + iε(a†e−iωpt − aeiωpt)

and subject to the cavity loss dissipator D(ρ) = 2κ[aρa†− 1
2 {a
†a, ρ}]. This roughly describes

a optical cavity with a non-linear medium inside, which therefore generate a photon-photon
interaction (the U term) (c.f. arXiv 1608.00717 for a cool recent paper about it). It
is also somewhat analogous to the types of interactions appearing in the Bose-Hubbard
model which presents a quantum phase transition between a superfluid phase and a Mott
insulator. This is an important model for ultra-cold atoms (c.f. Greiner et. al., Nature 415
39-44 (2002)).

(a) Find the equations of motion for 〈a〉. It will depend on higher order moments.

(b) Truncate it assuming that the pump is sufficiently large so that we can ignore the fluc-
tuations.

(c) Analyze the steady-state by plotting n = |α|2 as a function of the pump ε. Show that
for negative detuning, ∆ = ωc − ωp < 0, the system presents a bistable region where
two steady-states can coexist.

(d) Actually, I lied. You will find three steady-states. But one of them is unstable. Optio-
nal: analyze the stability of the system by linearizing the ordinary differential equati-
ons.


