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Magic-angle twisted bilayer graphene (MATBG) has been extensively explored both theoretically and experi-
mentally as a suitable platform for a rich and tunable phase diagram that includes ferromagnetism, charge order,
broken symmetries, and unconventional superconductivity. In this paper, we investigate the intricate interplay
between long-range electron-electron interactions, spin fluctuations, and superconductivity in MATBG. By
employing a low-energy model for MATBG that captures the correct shape of the flat bands, we explore the
effects of short- and long-range interactions on spin fluctuations and their impact on the superconducting (SC)
pairing vertex in the matrix random phase approximation (matrix RPA). We find that the SC state is notably
influenced by the strength of long-range Coulomb interactions. Interestingly, our matrix-RPA calculations
indicate that there is a regime where the system can traverse from a magnetic phase to the SC phase by increasing
the relative strength of long-range interactions compared to the on-site ones. These findings underscore the
relevance of electron-electron interactions in shaping the intriguing properties of MATBG and offer a pathway
for designing and controlling its SC phase.
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I. INTRODUCTION

Magic-angle twisted bilayer graphene (MATBG) has been
a prominent research topic in materials science due to its
highly tunable phase diagram, which displays similarities to
the phase diagram of the cuprate superconductors [1–3]. Ex-
periments indicate the presence of different phases in this
rich system, including ferromagnetism at half-filling [4,5],
charge order at quarter filling [6], broken symmetry orders at
half-integer fillings [7], evidence for strong correlations [8,9],
including competing orders [10] and Chern insulator states
[11], as well as corroboration for unconventional supercon-
ductivity [1,10]. Nonetheless, there is a lack of consensus
regarding an intrinsic superconducting (SC) pairing mech-
anism consistent with the observed plethora of interesting
phases in this system.

Interacting models of MATBG have the challenge of con-
ciliating the magnetic and SC phase scenarios observed in
the system. This interplay between magnetism and supercon-
ductivity corroborates the thesis that electron-electron (e-e)
interactions play a relevant role in the MATBG phase diagram,
establishing the relevance of magnetic fluctuations [12], in
analogy with other systems such as the iron pnictides [13],
where magnetic fluctuations dominate the (undoped) normal
state and may cause a SC gap to emerge [14].

On the theory side, Hubbard-like models for MATBG with
interaction-hopping ratios U/t ∼ 1 have been proposed [15],
which suggest that e-e interaction effects can be strong and
thus spin and charge fluctuations could have relevant contri-
butions to the origin of the SC phase in MATBG. The role of
e-e interactions in the insulating and SC phases of MATBG

was investigated experimentally in Ref. [16] by effectively
tuning the charge screening using a Bernal bilayer near the
MATBG sample. The results suggest that a larger screening
(weaker Coulomb interaction) tends to reduce the insulating
gap in MATBG, making the insulating states less robust. On
the other hand, the SC critical temperature at optimal doping
tends to increase for larger screening as compared to small
screening, effectively enhancing the stability of the SC phase.
The understanding of the microscopic picture behind these
findings might shed light on the conceptual dispute of e-e
versus electron-phonon mechanisms proposed for supercon-
ductivity in MATBG [17].

In this paper, we show that the shape of the SC phase is
strongly influenced not only by local but, interestingly, by
long-range interactions [18]. The normal state is modeled by
the low-energy two-orbital model parameterized in a tight-
binding (TB) Hamiltonian [19] that reproduces the flat band
dispersion of MATBG at the magic angle θ ≈ 1.05circ cap-
tured by the continuum model of Ref. [20]. In addition, this
noninteracting model accounts for the correct Fermi surface
(FS) topology of the system at the experimentally relevant
band fillings [19,21].

We then employ matrix random phase approximation (ma-
trix RPA) calculations [14,22–24] to investigate the effect of
short- and long-range interactions on the spin fluctuations and
their influence on the SC pairing vertex and, consequently,
on the onset of the SC phase. We focus our attention on the
dependence of the SC state as a function of both the band-
filling factor and long-range Coulomb interaction strength.

Our results show that, as a general trend, both on-site
and long-range interactions favor an SC ground state up to
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a maximum interaction strength beyond which a Stoner-like
magnetic instability sets in. More interestingly, for some val-
ues of the band-filling factor, there is a region in the phase
diagram where the (spin) Stoner boundary shows a duckbill
shape. As a consequence, in this region, the SC phase can be
enhanced by decreasing the long-range interactions relative
to the local ones, until eventually crossing the Stoner bound-
ary, into the magnetic phase, from above. In fact, also as a
consequence of this duckbill shape, there is a small region
of the parameter space where one can even tune the system
out of the magnetic (and into the SC phase, i.e., across the
Stoner boundary) by increasing the strength of long-range
interactions relative to on-site (local) ones.

Our RPA calculations show that such “reentrant behav-
ior” [see inset in Fig. 2(d)] is linked to a sharp increase in
the spin-singlet pairing vertex at finite momenta [compare,
e.g., Figs. 3(b) and 3(d)]. These results are consistent with
a scenario in which electron-electron correlations, especially
long-range ones, can play an important role in the pairing
mechanism in MATBG, as the interplay of band topology and
interactions can lead to the strengthening of the SC state in
flat band systems [25].

This paper is organized as follows: The microscopic model
and details of the matrix-RPA calculations are given in Sec. II,
while the main results for the SC pairing vertex are given in
Sec. III. One of our main results, the appearance of a duckbill-
shaped feature in the Stoner boundary line, is discussed in
Sec. IV. Our overall conclusions are summarized in Sec. V.

II. MODEL AND METHODS

A. Effective Hamiltonian

The formulation of effective low-energy models for
MATBG is a challenging task. Near the magic twist angle
θ ≈ 1.05, MATBG presents a very large unit cell with lattice
constant LM ≈ 13.4 nm and, conversely, the momentum-space
Brillouin zone (BZ) of the superlattice is very small [20,26],
making atomistic-type real-space TB descriptions a computa-
tionally costly endeavor [27].

A more sought-after approach is to build well-localized
Wannier orbitals describing the low-energy flat bands which
have been shown to be effectively detached from the conduc-
tion and valence bands for θ ≈ 1.05 [20]. Early proposals for
a TB two-orbital model based on optimized Wannier functions
[19,28] were able to successfully describe the band dispersion
of the flat bands, provided that the Wannier orbitals are greatly
optimized, leading to the need to include very long-range hop-
ping terms [19]. Corrugation (i.e., vertical relaxation) effects
are treated effectively in this model, which correctly accounts
for the DFT band structure at the magic angle [21] and shows
agreement with fully relaxed continuum models [29].

As later realized, such models are subject to the so-called
topological obstruction [30–33], in which some of the sym-
metries of the continuum model (including emergent ones)
cannot be captured by the effective TB model. Alternative
formulations, involving six, eight, or even ten orbitals per
valley and per spin, have been proposed [29,32,34].

We recall that an important factor in the matrix-RPA de-
scription of the (interacting) magnetic susceptibility is the

accuracy of the noninteracting bands and the shape of the
FS for a given filling as it leads to strong nesting effects
[14,35]. As such, while the topological obstruction in the
two-orbital model is a well-known issue, we are interested
in the low-energy phenomena leading to superconductiv-
ity in the system. Such regime will be dominated by the
flat bands, and the choice of a two-orbital model [28]
yielding a good enough description of the band dispersion
is an acceptable compromise for the goals of the present
paper.

As such, we adopt the following model Hamiltonian:

H = H0 + Hint, (1)

where the noninteracting term H0 is given by the two-band
model of Ref. [19]:

H0 =
∑
R,R′

∑
pp′σ

∑
ξ

t pp′

R,R′e
iξφ

pp′
R,R′ c†

Rpξσ cR′ p′ξσ , (2)

where c†
Rpξσ creates an electron with spin σ = {↑,↓}, valley

index ξ = ±, in the Wannier state |R, p〉 centered at position
p = A, B [see Fig. 1(a)], in the unit cell located at the moiré
lattice vector R. Notice that H0 is block diagonal in the valley
index ξ .

In our calculations, we followed Ref. [19] and considered
all hoppings t pp′

R,R′ and phases φ
pp′

R,R′ connecting sites at dis-
tances r � 9LM from each other. As shown in Fig. 1, the
resulting two-band dispersion reproduces well the flat bands
from the continuum model [20] at the magic angle θ = 1.05◦.

We show the resulting band structure and DOS in Figs. 1(b)
and 1(c). As usual, one can define the band filling factor ν =
4(n/ns) ∈ [−4, 4] where n is the carrier density and ns = 4/A′
(A′ unit cell area) is the superlattice carrier density. The filling
factor essentially counts the number of extra electrons and
holes per superlattice area, with the limiting cases ν =+(−)4
corresponding to a full (empty) band, while ν =0 corresponds
to charge neutrality.

The interacting part of the Hamiltonian, Hint, is given by

Hint =
∑
R,R′

∑
pp′σ σ̄

U pp′

R,R′N̂Rpσ N̂R′ p′σ̄ , (3)

where N̂Rpσ = ∑
ξ c†

Rpξσ cRpξσ is the number operator related
to the Wannier state. It is also useful to define the total number
operator N̂R ≡∑

p,σ N̂Rpσ . Due to spin and orbital degeneracy,
the model considers up to eight electrons per unit cell (〈N̂R〉�
8). As such, one can write the filling factor as ν =〈N̂R〉 − 4. In
passing, we notice that charge neutrality (ν = 0) corresponds
to 〈N̂R〉=4 and that ν =±2, often referred to in the literature
as half filling of the electron (hole) band, corresponds to
〈N̂R〉=6 or 〈N̂R〉=2 in our calculations.

The Hubbard-like terms in Eq. (3) encode both short- and
long-range density-density interactions. For example, U AA

R,R =
U BB

R,R ≡ U denotes on-site Hubbard terms and U AB
R,R ≡ U1 de-

notes one of the three nearest-neighbor terms. In the present
paper, we consider interactions up to five nearest neighbors,
as depicted in Fig. 1(a). In addition, for the purposes of this
paper, we can safely neglect the exchange terms in Eq. (3),
as they are estimated to be much smaller than the direct ones
[19].
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FIG. 1. Schematic of the noninteracting model we used, obtained
by Wannierizing the TBG continuum model [19]. (a) Depiction of
the real-space moiré superlattice for θ = 3.2o centered at an A sub-
lattice site (red circle) with first neighbor B sublattice sites (green
circles) and up to fifth-nearest-neighbor sites (green circle, blue,
cyan, orange, and magenta triangles). Also shown are the lattice
vectors L1 and L2 and some of the δ

pp′
R,R′ vectors defined in Eq. (4) for

R′ ≡ Rn = R + n1L1 + n2L2 with n1 and n2 integers. (b) TBG band
structure obtained with the TB model used here. The red and blue
lines in (b) denote the ξ = ± orbitals. The horizontal dashed lines in
(b) denote the doping levels of the Fermi surfaces shown in Fig. 2:
ν = −0.81 (green), ν = −2.48 (magenta), and ν = −3.05 (cyan).

As will become clear in the next section, it is useful to
define

U pp′
(q) ≡

∑
R,R′

U pp′

R,R′e
iδpp′

R,R′ ·q, (4)

where δ
pp′

R,R′ are real-space vectors connecting Wannier orbital
centers (p, R) and (p′, R′); see Fig. 1(a).

B. Charge and spin fluctuations: Matrix-RPA formalism

Different RPA approaches have been used to study the
Coulomb screening potential [36–39] and the SC pairing
symmetries in TBG [35,40–42]. The matrix RPA method,
for example, can account for pairing vertex diagrams beyond
what is usually known as RPA [23].

In particular, several SC gap symmetries are found to be
present and to compete as a function of Hubbard and ex-
change parameters in TBG [35], but the chiral d + id-wave
superconductivity emerges in both RPA [35,40] and full-scale
atomistic modeling with local electronic interactions [27].

However, previous works have not considered the moiré-scale
long-range interactions in MATBG, which have been shown
to be large [19,34] and relevant to the SC state [42].

Our goal is to probe the SC instability caused by charge
and spin quantum fluctuations. In the following, we describe
the matrix RPA steps used in our analysis. The starting point
is the bare (noninteracting) multiorbital susceptibility matrix
elements for each spin [14,24]:

[χ̂0(q, ω)]pξ,qξ ′
rξ,tξ ′ =

− 1

N

∑
k,νν ′

arξ
ν (k)apξ

ν (k)∗aqξ ′
ν ′ (k + q)atξ ′

ν ′ (k + q)∗

ω + Eν ′ (k + q) − Eν (k) + i0+

× ( f (Eν ′ (k + q)) − f (Eν (k))), (5)

which depend on the eigenvalues Eν (k) of the noninteracting
Hamiltonian H0 [Eq. (2)] and on the eigenvector coefficients
apξ

ν (k) ≡ 〈pξ |νk〉, which correspond to the projection of band
state |νk〉 into the Wannier orbital |p〉 = |A(B)〉 at valley
|ξ 〉 = | + (−)〉. As such, χ̂0(q, ω) is a 16 × 16 matrix span-
ning the {pξ, qξ ′} basis. In Eq. (5), N is the number of BZ k
points considered in the summation and f is the Fermi-Dirac
distribution for a given temperature T . Throughout this paper,
we used a summation grid of 98 342 k points in the hexagonal
lattice BZ.

Following Refs. [14,22,24,43–46], we write the RPA spin
and charge susceptibilities suitable to probe for magnetism
and/or charge order in the system, respectively, by

χ̂s(q, ω) = χ̂0(q, ω)[1̂ − Ûs(q)χ̂0(q, ω)]−1, (6)

χ̂c(q, ω) = χ̂0(q, ω)[1̂ + Ûc(q)χ̂0(q, ω)]−1, (7)

where the nonzero Ûs(q) and Ûc(q) matrix elements in terms
of the U pp′

(q) defined in Eq. (4) are given by [47]

[Ûc(q)]pξ,pξ ′
pξ,pξ ′ = U pp(q)δξξ ′ , (8)

[Ûc(q)]pξ,pξ ′
rξ,rξ ′ = 2U pr (q)δξξ ′ , (9)

[Ûs(q)]pξ,pξ ′
pξ,pξ ′ = U pp(q)δξξ ′ , (10)

where p = r in Eq. (9).
In this paper, we consider long-range interactions up to

the fifth-nearest neighbors, making use of the next-neighbors
ratios calculated in Table I of Ref. [19], namely, Ui/U1 =
0.7469, 0.6967, 0.4547, 0.4005 (i = 2, . . . , 5), while U1/U
and U will be taken as free parameters [48].

Due to the strong Hubbard-like interactions, a spin-singlet
pairing mechanism is believed to be the leading candidate for
superconductivity in MATBG [27,49], as there is currently
no hard experimental evidence for spin-polarized Copper
pairs [1,24] and some theoretical studies suggest that sin-
glet spin fluctuations can lead to SC pairing in MATBG
[49]. In addition, previous RPA calculations show that spin-
singlet superconductivity is more prominent in MATBG [50],
while, more recently, the onset of SC phases originating
from interactions between electrons on the same honey-
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comb sublattice has been found to be of the spin-singlet
type [42].

We proceed with the calculation of the spin-singlet mul-
tiorbital pairing vertex [
(k, k′, ω)]pξ,qξ ′

rξ,tξ ′ related to the RPA
charge and spin susceptibilities as [14,22,24]

[
(k, k′, ω)]pξ,qξ ′
rξ,tξ ′ = [

3
2Ûsχ̂s(k − k′, ω)Ûs + 1

2Ûs

− 1
2Ûcχ̂c(k − k′, ω)Ûc + 1

2Ûc
]tξ ′,qξ ′

pξ,rξ
,

(11)

where χ̂s(k) and χ̂c(k) are the spin and charge susceptibilities
defined in Eqs. (6) and (7), respectively, while p, q, r, t are
orbital indices [as in Eq. (5)].

We also define the kernel function 
(k, k′), associated to
the scattering of a singlet pair (k ↑ p,−k ↓ r) at a FS sheet Ci

with another pair (k′ ↑ q,−k′ ↓ t ) at another (disconnected)
FS sheet Cj [24]:


(k, k′) =
∑

rt pq,ξξ ′
atξ ′,∗

ν−k
(−k)arξ,∗

νk
(k)

× Re
[



pξ,qξ ′
rξ,tξ ′ (k, k′, 0)

]
apξ

νk′ (k
′)aqξ ′

ν−k′ (−k′), (12)

where apξ
νk are defined as in Eq. (5) with the caveat that the

band index νk is now defined by the FS constraint Eνk (k) =
EF , where EF is the Fermi energy.

The kernel 
(k, k′) [Eq. (12)] is a matrix having Nk rows
and Nk′ columns so there will be Nk eigenvalues, one for each
k. Thus, 
(k, k′) is associated with the pairing strength λα ,
which relates to the gap function gα (k) through the integral
equation [14,51]

−
∑

j

∮
Cj

dk′
||

vF (k′)
1

(2π )2

̄(k, k′)gα (k′) = λαgα (k), (13)

where the 
̄(k, k′) is the so-called symmetric part of the

(k, k′) kernel function defined in Eq. (12): 
̄(k, k′) ≡
[
(k,−k′) + 
(k, k′)]/2 (see Appendix A for a formal
derivation).

The summation and integral operators in Eq. (13) have the
same role as the summation in the usual eigenvalue equa-
tion. The eigenvalues λα and eigenvectors gα (k) refer to the
momentum vectors k probed over the respective FS Ci, to
which the line or surface integral refers. In other words, the
number of points probing the FS of the system is, therefore,

the dimension of the matrix
dk′

||
vF (k′ )

1
(2π )2 
(k, k′) that shall be

diagonalized. The largest SC critical temperature (Tc) value
corresponds to the leading pairing strength λ ≡ max(λα ),
which will dominate the SC instability.

The generalized Stoner criterion [namely, the vanishing of
the denominator in the RPA spin and charge susceptibilities at
ω = 0, Eqs. (6) and (7), respectively] establishes the condition
for the transition between a paramagnetic (uniform density)
state possibly favoring the SC phase, and a magnetically
(charge) ordered one in the particle-hole (particle-particle)
channel [51–55]. As such, within the RPA approach, the
Stoner criterion can be used as proxy to identify the on-
set of a magnetic-ordered phase in the particle-hole channel

FIG. 2. (a), (c), (e) Fermi surface plots for the ξ = + (blue)
and ξ = − (red) orbitals for different fillings ν, as indicated in
Fig. 1(b) by horizontal dashed lines. (b), (d), (f) Phase diagram color
maps denoting the pairing strength λ as a function of U1/U and U for
T = 1 mK. The black line in each panel indicates where the magnetic
Stoner criterion has been fulfilled, i.e., max(αs ) = 1, resulting in
magnetic order to its right side (hatched area). We clipped values
above λ = 2 to white color. The symbols in (d) and (f) denote the
interaction values for which the pairing vertices shown in Fig. 3 are
computed.

[56]. With this goal, we define the spin (αs) and charge (αc)
Stoner parameters by solving the following eigenvalue equa-
tions [55]:

1̂αs − Ûsχ̂0 = 0,

1̂αc + Ûcχ̂0 = 0. (14)

The matrix-RPA Stoner criterion is fulfilled when
max{αs, αc} = 1.

III. SUPERCONDUCTING PAIRING VERTEX

We now turn to the connection between short- and long-
range interactions and the onset of superconductivity in
MATBG. Concretely, we will consider the hole-doped case,
with Fermi energies [EF s, depicted by the horizontal lines in
Fig. 1(b)] located at or below the lower (holelike) Van Hove
singularity shown in Fig. 1(c).

The FSs for three different filling factors are shown in
Figs. 2(a), 2(c), and 2(e). In Fig. 2(a), we show the (hole)
pockets holding scattering events for ν = −0.81, which cor-
responds to an EF value pinned at the Van Hove singularity.
Figures 2(c) and 2(e) present FS energy cuts for ν = −2.48
and ν = −3.05, which have lobes contained within the mini-
BZ. In fact, for ν = −2.48 the lobes of the FS are touching
the M points at the edges of the BZ.

We solve Eq. (13) for the FSs shown in Figs. 2(a), 2(c),
and 2(e) as a function of the Hubbard parameter U and the
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FIG. 3. Spin-singlet pairing vertex [Eq. (11)] (left axis) matrix
elements and momentum-dependent Hubbard-like terms [Eq. (4)]
(right axis) for ν = −2.48 at U = 1.8 meV and ν = −3.05 at U =
3.2 meV (left and right panels, respectively), and U1/U = 0 (a),
(b), U1/U = 0.015 (c), (d), or U1/U = 0.055 (e), (f). The left-hand
panels correspond to the circle symbols and the right-hand panels to
square symbols in the phase diagrams shown in Figs. 2(d) and 2(f),
respectively. The thin horizontal black lines denote the Hubbard U
[Eq. (4) at U1/U = 0] in each simulation.

long-range control parameter U1/U . The results are shown in
Figs. 2(b), 2(d), and 2(f).

The previously defined leading pairing strength λ =
max(λα ) quantifies the highest SC critical temperature (Tc ∝
e−1/λ). Thus, in Fig. 2, λ � 1 regions (purple to yellow colors)
indicate SC phases with moderate-to-high Tc, while λ � 1
(yellow to white colors) means strong coupling and poten-
tially larger Tc values. Magnetically or charge-ordered states
are obtained when the spin or charge fluctuations generate a
condensate with a critical temperature higher than Tc. This
happens when the maximum Stoner parameter (either αs or
αc) [Eqs. (14)] becomes equal to 1. As indicated in Fig. 2,
within the range of the parameters explored here, spin order
(black curve) always emerges before charge order (see Ap-
pendix IV B for details).

The max(αs) = 1 displays a duckbill shape for fillings
close to ν = −2.48 [Fig. 2(d)] The presence of the duckbill
shape in Fig. 2(d) generates a particular region of the phase
diagram that may be described as follows: (i) moving from
left to right along a horizontal line passing through either of
the two circles at U1/U = 0 and 0.015 will result in an expo-
nential increase in Tc with U , creating a region in the phase
diagram (around the duckbill shape) with the most robust
superconductivity, before magnetic order sets in (this kind of
behavior will occur as long as U1/U � 0.04) and (ii) a vertical
line passing through the circles will result in an increase in Tc

for decreasing U1/U . This last behavior, in particular, will be
analyzed in more detail below (see Fig. 3), through a study of

the most relevant spin-singlet pairing vertex matrix elements
for U and U1/U values marked by the symbols in Figs. 2(d)
(circles) and 2(f) (squares).

Figure 3 shows the intersublattice and intrasublattice spin-
singlet pairing vertex matrix elements [Eq. (11)] computed for
ν = −2.48. Panels in the left (right) column present results for
the U1/U and U values corresponding to the symbols marked
in Figs. 2(d) [2(f)]. We first note that curves corresponding
to intersublattice matrix elements (A, B and B, A) are almost
identical, and the same is true for the intrasublattice ones (A, A
and B, B).

Moreover, the values of the intrasublattice matrix elements
are systematically larger than the intersublattice ones. For
most scattering momenta, they are both positive (repulsive
effective interaction), although a small negative (attractive
effective interaction) region appears for ν = −3.05 filling
[Figs. 3(b) and 3(d)], around the M high-symmetry point for
the intersublattice matrix elements. Based in these results, we
argue that the main SC channel in the strong-coupling region
is of the singlet type, since our pairing vertex calculations for
the triplet channel are lower in absolute value than for the
singlet channel, although they display larger negative value
(attractive) regions (see Appendix B).

In addition to the pairing vertex, Fig. 3 also presents results
for the intrasublattice interactions U pp(k − k′) (thick black
lines, with its value displayed in the right-side vertical axis).
These intrasublattice interactions are the most relevant to
our analysis because the spin fluctuations, which dominate
pairing, depend only on them [Eq. (10)]. We note that, for
U1/U = 0, U pp does not depend on k − k′ [Figs. 3(a) and
3(b)]. Those horizontal lines are repeated on the finite U1/U
panels to highlight the fact that, once long-range interactions
are turned on, the BZ divides itself up into regions where
repulsion is increased (a large region around the 
 point and
small regions around the K points) or decreased (the rest
of the BZ, see Fig. 4) in relation to the constant repulsion
value for vanishing U1/U . In what follows, we will refer to
the latter region as having “attractive” long-range components
and the former as having “repulsive” long-range components.
As discussed below, the existence of the duckbill shape for
an specific filling depends on which region (attractive or re-
pulsive) is located the nesting vector, for U1/U = 0, where
the divergence of both the spin susceptibility and the pairing
vertex occur.

IV. DISCUSSION ON THE DUCKBILL FEATURE
IN THE STONER BOUNDARY LINE

A. The role of nesting

The results shown in the left-side panels of Fig. 3, for ν =
−2.48, indicate that the pronounced peak in the pairing vertex
matrix elements 


pξ pξ ′
rξrξ ′ (q) around the M point (q ≈ qM) are

suppressed as U1/U increases. Here, we argue that, for small
values of U1/U , such suppression is related to the interplay
of strong nesting effects at q ≈ qM and the fact that there are
effectively negative (attractive) interaction contributions that
make diagonal interaction terms U pp(q) [defined by Eq. (4)] to
be smaller than U , precisely around q = qM , due to the lattice
geometry.
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FIG. 4. Spin-singlet pairing vertex [Eq. (11)] (top row) for U1 = 0 and different values of U and respective noninteracting Fermi surfaces
(lower row) for different fillings ν. The curves defined by U pp(q) = U are shown in magenta, with U pp(q) < U in the inner part of the pockets.
The arrows denote the nesting vectors and which regions of the Fermi surfaces they connect. Red arrows highlight fillings with nesting vectors
near the M point.

Figure 4 shows the normalized diagonal pairing vertex

rr

rr (q, ω = 0) (see Eq. (11); for clarity, we omit the valley
indices in the following notation) for different filling factors
(upper panels), along with the corresponding FSs (lower pan-
els). As a general trend, the peaks in 
rr

rr (q, ω = 0) occur
at the FS nesting vectors shown in the lower panels. Notice
that, for ν ≈ −2.48, the nesting is close to the M point and,
for finite U1/U , located inside the U pp(q) < U region, mean-
ing that the overall contribution of the long-range interaction
terms to U pp(q) is negative (attractive).

From these results, the qualitative behavior of the Stoner
boundary [black line in Fig. 2(d)] can be understood as
follows. Let us consider the leading diagonal terms of
the noninteracting susceptibility [[χ̂0(q)]pp

pp from Eq. (5)]
and the interaction matrix U pp

s (q) [Eq. (4)]. For U1/U ≈
0, the Stoner criterion [max(αs) = 1 in Eq. (14)] is dom-
inated by [χ̂0(q ≈ qM )]pp

pp ∼ 1/U , where the maximum in
[χ̂0(q)]pp

pp occurs due to nesting at q ≈ qM , since, for small
U1/U , U pp

s (q) ≈ U (and largely independent of q). This
analysis applies to the immediate vicinity of the U1/U =
0 circle in Fig. 3(d), which sits very close to the Stoner
boundary.

As one moves away from the Stoner boundary into the SC
phase by increasing U1/U , while keeping U fixed, U pp

s (q), at
q ≈ qM , will actually be reduced. Thus, to return to the Stoner
boundary while keeping U1/U fixed, one has to increase U to
fulfill the Stoner criterion again. Thus, the Stoner boundary,
for small values of U1/U , will have a positive slope in the
U1/U vs U plane.

Note that the main condition for such behavior to occur is
precisely that U pp

s (q̄) < U at the nesting vector q̄, a situation
occurring for fillings near ν = −2.48 (precisely where the
lobes of the FS touch the M point of the BZ) with q̄ ≈ qM
[see Figs. 4(d)–4(f)]. These nesting vectors are indicated by
red arrows in Fig. 4. For other filling factors, the nesting
occurs at regions where, for finite U1/U , U pp

s (q̄) > U (inside
the closed magenta curves defined by U pp

s (q) = U , as shown
in the upper panels of Fig. 4), which produces a negative
slope for the Stoner boundary in the U1/U vs U plane. The
corresponding nesting vectors are indicated by green arrows
in Fig. 4. We emphasize that the physical picture presented
here is quite generic and depends only on the interplay of
nesting effects and the structure of U pp(q), which is largely
model independent.

Now, for large values of U1/U , U pp
s (q) has a strong q

dependence and a pronounced maximum at q = 0 [see, e.g.,
Fig. 3(e)]. Thus, the Stoner criterion can be fulfilled by
[χ̂0(0)]pp

pp ∼ 1/U pp
s (0), independently of nesting conditions.

Since the overall contributions of the long-range interactions
to U pp

s (q) are positive (repulsive) at q ≈ 0, this implies that
as one moves away from the Stoner boundary and into the SC
region by decreasing U1/U , this will also reduce U pp

s (q ≈ 0).
Again, one would have to increase U , while keeping this
value of U1/U fixed, in order to reestablish the conditions for
the Stoner criterion. Thus, the Stoner boundary will generally
have a negative slope in the U1/U vs U plane for large values
of U1/U , as shown in Figs. 3(b), 3(d), and 3(f).

B. Stoner parameters

The above arguments can be put into more quantitative
terms by plotting the Stoner criterion parameters αs and αc

defined in Eq. (14) as a function of U1/U for given values of
U and ν. Figure 5 shows the spin [max(αs), solid lines] and
charge [max(αc), dashed lines] Stoner parameters [Eq. (14)]
computed as a function of U1/U , for fillings ν = −2.48
[Fig. 5(a)] and ν = −3.05 [Fig. 5(b)] and different values
of U .

For ν = −2.48 [Fig. 5(a)], max(αs) shows a nonmonotonic
behavior as a function of U1/U for all values of U shown.
It initially decreases with U1/U , reaches a minimum around
U1/U ≈0.04, and increases again, until the Stoner instabil-
ity [max(αs)=1] is reached. By contrast, for ν = −3.05,

FIG. 5. Stoner parameters αs (αc) for fillings ν = −2.48 (a) and
ν = −3.05 (b) and different values of U as a function of long-range
coupling strength U1/U .
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max(αs) shows a monotonic behavior as a function of U1/U ,
although with a cusplike feature around U1/U ≈0.04.

More interestingly, for U = 1.81 meV, max(αs) lies above
the Stoner instability value already at U1/U =0. Surprisingly,
increasing U1/U from zero tends to suppress the magnetic
order and favor the SC phase at U1/U ≈0.01, crossing the
Stoner instability line from above. As expected, by further
increasing U1/U one crosses the Stoner instability line from
below at U1/U ≈ 0.04. This is a signature of the duckbill
feature discussed earlier.

We notice in passing that the charge Stoner parameter
max(αc) (dashed lines in Fig. 5) is essentially negligible in
the 0 � U1/U � 0.2 interval, for both cuts and both fillings.

V. CONCLUDING REMARKS

In this paper, we investigated the interplay between on-site
and long-range interactions in the SC phase of MATBG. By
employing a low-energy model which accurately describes
the low-lying flat bands at the magic angle and by perform-
ing matrix-RPA calculations, we have uncovered intriguing
insights into the crucial role played by long-range interactions
in shaping the SC behavior of this material.

Our investigations reveal an intricate dependence of the
SC phase on the strength of long-range interactions. We ob-
serve that, as a general trend, both on-site and long-range
interactions can favor the emergence of the SC phase up
to a certain threshold when a Stoner-like instability sets in.
Notably, for some band-filling factors where nesting between
momentum points at distances close enough to the M points
in the Brillouin zone is present in the FS, our results showcase
a distinctive feature in the phase diagram—a duckbill shape
in the Stoner boundary.

Such surprising reentrant behavior in the phase diagram
offers a scenario in which increasing the strength of long-
range interactions relative to the local ones can drive the
system across the Stoner boundary and into the SC phase
and underscores the intricate sensitivity of the SC state to the
delicate balance between short- and long-range interactions.
We emphasize that this feature is the result of an interplay
of FS nesting and lattice geometry effects on the long-range
interactions (which include attractive components around the
M points) and it constitutes a rather generic result which can
be extended to systems featuring similar lattice geometries.

In summary, this work underscores the role of the
nontrivial interplay between magnetism and long-range
interactions in the unconventional SC behavior of MATBG.
We leave for future work a more detailed investigation of
the SC gap symmetry as a function of filling and long-range
interaction strength, and the possible magnetic textures in the
phase diagram.

We have made this model openly available in Python and
Fortran [57].
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APPENDIX A: DERIVATION OF THE PAIRING
STRENGTH EQUATION

Here, we provide a derivation of Eq. (13). First, Eqs. (8)–
(10) are obtained by explicitly identifying the terms of Eq. (3)
to those of a generic (multisublattice) interaction Hamiltonian,
whose terms can be tracked as contributions to the RPA spin
and/or charge susceptibilities [Eqs. (6) and (7)]. These, in
turn, are used to compute the expression for the pairing vertex



pq
rt (k, k′, ω) [Eq. (11)], which is sensible to the (noninteract-

ing) electronic structure of the system.
Next, we write the effective pairing potential, which en-

codes the dynamical screening of the system’s interacting
potential [35], given by

Veff(ω) =
∑
kk′
pqrt
ξξ ′



pξ,qξ ′
rξ,tξ ′ (k, k′, ω)c†

kpξ↑c†
−krξ↓c−k′tξ ′↓ck′qξ ′↑.

(A1)

Following Scalapino et al. [58], we define FS averaged
spectral weights

F (ω) = − 1

π

∑
k′

∮
Cj

dk′

(2π )dvF (k′)
Im
̄(k, k′, ω), (A2)

where d is the momentum space dimension and the integral
is taken over closed FSs Cj present on the Fermi level of the
system, over which one computes the Fermi speed vF (k′) =
|∇k′Eν | over the νth noninteracting band to perform the mo-
mentum integration. In this context, 
̄(k, k′, ω) contains the
ground-state fluctuations and must, therefore, be computed at
very low temperatures.

The quantity F (ω) is thus a measure of the strength of
pairing potential and contains information regarding repulsive
or attractive components of it. The vertex’s imaginary part
accounts for the momentum transferred after an interacting
scattering event. Here, we aim to characterize the strength of
the pairing interaction in a given channel, so we use Eq. (A2)
to weigh over frequency, defining the pairing strength λ:

λ =
∫ +∞

0
dω

F (ω)

ω
. (A3)

By making use of the Kramers-Kronig relation [14], we
obtain a frequency-independent form

λ = −
∑

k′

∮
Cj

dk′

(2π )dvF (k′)
Re
̄(k, k′, 0). (A4)

The SC critical temperature is roughly given by Tc = ω0e−1/λ,
where ω0 is a characteristic frequency cutoff of the spectral
weights F (ω).

The parameter λ defined in Eq. (A4) can be interpreted
as an action that is minimized in some parameter region.
Under the present definition, there is no upper boundary to the
functional λ. Next, we naturally extend this idea to define the
coupling strength functional that takes as argument the nor-
malized gap symmetry g(k) such that �(k) = �0g(k), which
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FIG. 6. Spin-triplet pairing vertex [Eq. (B1)] following the same
notation as Fig. 3.

is integrated over the k range:

λ[g(k)] = −
∑

k

∮
Ci

dk
(2π )dvF (k)

∑
k′

∮
Cj

dk′

(2π )dvF (k′)

× g(k)Re
̄(k, k′, 0)g(k′)

×
⎡
⎣∑

k′

∮
Cj

dk′

(2π )dvF (k′)
g(k′)2

⎤
⎦

−1

. (A5)

Finally, we impose the stationary condition for this functional,
i.e., δλ/δg(k) = 0, to take into account mass renormalization
[59]. This procedure results in the eigenvalues and eigenvec-
tors Eq. (13) [14,58]. There, an index α labels the several
solutions for the equation. However, the higher λα will gen-
erate the higher Tc, which is the physically realized critical
temperature. For example, under the constant density of states
assumption, Eq. (13) retakes a BCS form

−
∑

k′
ρF 
̄(k, k′)gα (k′) ≈ λαgα (k). (A6)

APPENDIX B: SPIN-TRIPLET PAIRING VERTEX

Figure 6 shows the spin-triplet pairing vertex defined as
[35]



pξ,qξ ′,T
rξ,tξ ′ (k, k′, ω) = [− 1

2Ûsχ̂s(q = k − k′, ω)Ûs + 1
2Ûs

− 1
2Ûcχ̂c(q = k − k′, ω)Ûc + 1

2Ûc
]tξ ′,qξ ′

pξ,rξ
.

(B1)

As pointed out in the main text, the triplet channel has
several attractive components but they are lower in magnitude
than all the singlet channel ones [see the scale from −2 to
1 meV in Fig. 6(a) and 0 to 12 meV in Fig. 3(a)]. For this

FIG. 7. Same-sublattice Hubbard-like interactions U pp(q) (col-
ors) for different fifth- by second-nearest-neighbor interaction
strength ratios U5/U2.

reason, we neglect the triplet channel in our calculations of
the pairing strength λ.

APPENDIX C: WEAK DEPENDENCE
ON THE RATIOS Ui/U1

In the main text, we showed simulations using the inter-
action ratios Ui/U1 given in Ref. [19], which used maximally
localized Wannier functions to compute the interaction ratios.
These ratios can, however, depend on both the model and on
the Wannierization method used for their calculation. In this
Appendix, we show that our main results are robust, as they
are not affected by small changes in these ratios.

As argued in Sec. III, the only relevant Hubbard-like in-
teractions [Eq. (4)] for the spin fluctuations, which dominate
pairing, are the same-sublattice elements U pp(q) with p =
A, B. In addition, sublattice symmetry ensures that U AA(q) =
U BB(q). Now, according to Fig. 1(a), the only same-sublattice
neighbors are the second (U2) and fifth (U5), so the elements
relevant for the SC instability are independent of other neigh-
bors, such that we set them to zero in this Appendix. Thus,
a key ratio in our calculation is U5/U2, which is reported by
Ref. [19] as 0.5361 (or 54%).

As we argue in the main text, a key component of our
results is the fact that U pp(q) displays minima around the M
points and that the position of the minima is independent of U
(see Fig. 4). In Fig. 7, we show that such minima are (i) robust
upon a change in the ratio U5/U2, down to 35% [Fig. 7(b)] and
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(ii) present for any finite long-range intrasublattice interaction
strength.

Interestingly, for U5/U2 < 35%, the minima in U pp(q) will
develop around the K points in scattering space, raising the
question of which interaction minima cause the strongest pair-
ing in MATBG, either K or M points. Reference [34] used
an eight-orbital model fitted to a corrugated continuum model
[29] and found that interactions between neighbors separated
by LM/r > 50% follow an LM/r curve. The second-nearest

neighbors (corresponding to the U2 interaction strength) are
separated by LM/r = 1, while the fifth-nearest neighbors (cor-
responding to U5) are separated by LM/r ≈ 2. These results
give an estimate of the ratio U5/U2 ≈ 50%. This is consistent
with the result computed by Ref. [19], for which U5/U2 ≈
54% [Fig. 7(a)], establishing the minima at the M points as
the main model-independent feature originating the re-entrant
magnetic state in MATBG as a function of the long-range
interaction strength.
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